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1 INTRODUCTION 

 

This report has two goals: first, to summarize and clarify the role of RMS-to-peak 

conversion factors in random vibration theory (RVT), and second, to compare two 

different RMS-to-peak factors using simulated and recorded ground motions. For the 

second task, we look for trends in the differences between RMS-to-peak factors in terms 

of the 5% damped pseudo spectral acceleration (PSA). We look for trends as a function 

of the oscillator period (T) of a single-degree-of-freedom (SDOF) system, the earthquake 

magnitude (M), and the epicentral distance (R).  

The differences in the PSA that result from the two RMS-to-peak factors that we 

address in this report are illustrated in Figure 1. Subfigures (a) and (b) show the mean 

PSA from 100 ground-motion simulations of an M 6 earthquake at distances of 5 km and 

50.7 km, respectively. The simulation method is described in section 2.1 and the RVT 

methods to compute the PSA from the ground acceleration are described in section 2.2. 

Subfigures (c) and (d) show the residuals, defined as the ratio of the two different PSA 

curves that are predicted using spectral moments calculated from simulated ground 

motions, along with the RMS-to-peak ratio from RVT; we use two versions of this ratio: 

the curve labeled B03 is the ratio described by Boore (2003) and the curve labeled DK is 

the ratio described by Der Kiureghian (1979; 1983); these two ratios are described in 

detail later. The PSA curves are generated from the same set of 100 simulated time series 

and the only difference is RMS-to-peak factors. Thus, the differences in PSA can only be 
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attributed to the different RMS-to-peak methods. We see from subfigures (a) and (b) that 

the largest differences in an absolute sense tend to occur near the maximum PSA. But 

looking at the PSA ratios, we see that important differences also occur longer periods.  

We include both simulated and recorded ground motions in our analysis because 

each has an advantage over the other. The benefit of simulated time histories is that we 

can generate as many records as necessary for the values of T, M, and R of interest. 

Though the simulated records exhibit the proper frequency content and duration for a 

given M and R, the possibility remains that some other characteristic of earthquake 

ground motion will affect the RMS-to-peak factor (such as whether or not the time series 

are clustered). Thus, the appropriateness of conclusions based on simulations may be 

questioned. To address this issue, we also compare the results from different RMS-to-

peak factors to recorded ground motions. The major drawback to this approach is that we 

are limited by the available data, and thus some earthquake parameters are under 

represented. In order to achieve a reasonable sample size for recorded data, we must 

choose data bins that are defined for a range of magnitudes and distances. We use records 

that have been collected and processed for the Next Generation of Attenuation (NGA) 

West-2 project.  

The sample size (i.e., the number of recordings used to compare theoretical and 

empirical values) is a fundamental issue in this analysis. The RVT predictions should be 

accurate on average, but any individual time series may deviate significantly from the 

average response. For a given M and R, we compute 100 synthetic simulations. For 

recorded ground motions, we bin the records for a range of M and R. The magnitudes 

were chosen to span the range that is of primary interest to the PEGASOS project (M 4.5 

to 7.5; Renault, pers. comm., 2010). The goal when choosing the distance bins was to 

achieve a minimum number of records of approximately 100 records in each bin while 

keeping the distance ranges constant across the different magnitude classifications (it was 

not possible to achieve this goal for all bins).  

We begin by reviewing RVT and the methods for simulating earthquake time 

series. Our analysis begins with the stochastic simulation of ground motions. From these 

data we estimate the “true” (though simulated) PSA and compare the results to those 

obtained for two different RMS-to-peak factors. Then we repeat this analysis replacing 



PK/RMS Report 3 Thompson and Boore 
C:\pegasos_rvt_evaluation\pegasos_rvt_rms2pk_v1.1.doc 

the simulated time series with recorded ground motions and analyze the trends in terms of 

the difference between the predicted and observed peaks, as well as the difference 

between the two different methods of predicting the peak motions.  

 

2 METHODS 

 

2.1 Stochastic Simulation of Ground Motions 

For this report, we use the Boore (1983) method to generate ground motion 

simulations, as implemented in the program SMSIM (Boore, 2005). This method begins 

by generating a time series of band-limited random white Gaussian noise with zero 

expected mean. The variance is constrained such that the spectral amplitude is unity on 

average. The amplitude spectrum of the noise is multiplied by the target amplitude 

spectrum, which is then transformed back into the time domain. The target spectrum is 

defined from an earthquake source model, such as the omega-squared model (Aki, 1967). 

In this report, we use the Atkinson and Silva (2000) 2-corner source model and western 

generic rock amplifications (the parameter file for a sample run is given in Appendix 2). 

We do not expect that the results regarding the RMS-to-peak factors are sensitive to the 

assumed source model (it is beyond the scope of this project to test this assumption). 

Following Boatwright and Choy (1992), the lower corner frequency (fa) of the 2-corner 

source model determines the source duration: 

 

Ds  0.5 fa
1.  (1) 

 

The total duration of the ground motion time domain window is  

 

Dgm  Ds  0.05R  ,  (2) 

 

where 0.05R is the component of the duration due to path effects (Atkinson and Silva, 

2000). The exponential window function used by SMSIM is 

 

w(t)  a(t / t )b exp[c(t / t )] , (3) 
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where t  is 2Dgm, and  

 

)]1(ln1/[ln  b  ,  

c  b /Dgm  , and  

a  [e /Dgm ]b  ,  

 

where   0.2 and   0.05 are based on the results from Saragoni and Hart (1974).  

 

2.2 Random Vibration Theory 

RVT uses the moments of the squared amplitude spectrum to relate the peak 

(xmax) to the RMS (xrms) of a random time series x(t) . The ith spectral moment is defined 

as  

 





0

2
)()2(2 dffXfm i

i   ,  (4) 

 

where f is frequency and X is the amplitude spectrum of x(t) , which can be defined from 

a source and path model (e.g., Atkinson and Silva, 2000), or estimated from a recorded or 

simulated time series. Note that xrms can be computed from the zeroth spectral moment 

 

xrms  m0 /Drms  ,  (5) 

 

where Drms is defined differently when x(t)  is a ground motion and when x(t)  is the 

response of a SDOF system. When x(t)  is a ground motion, Drms is simply equal to Dgm 

(equation 2).  When x(t)  is the response of a SDOF system, we use the Boore and Joyner 

(1984) method to compute Drms from Dgm and T.  

For simulated ground motions, Dgm can be computed from the source model and 

epicentral distance (equation 2); for the recorded NGA time series, however, Dgm is not 

known a priori and it must be computed from the observed time series. Thus, we estimate 
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Dgm from  dttx )(2  (i.e., the Husid plot). To be consistent in our treatment of the 

simulated and recorded data, we also estimate Dgm from the Husid plot for the simulated 

data. The duration is computed from the times where the Husid curve reaches minimum 

and maximum values as a percent of the maximum of the Husid curve. The minimum and 

maximum percentages must be defined differently for the SMSIM simulations and 

recorded data. The reason for this is that SMSIM does not include surface waves, unlike 

the recorded data. Following Bommer et al. (2009), we use D95-5, which is the time 

between 5% and 95% of the Husid curve, to estimate the duration of the full wave field 

for simulated time series. In contrast, we use D75-5, to estimate only the duration of the 

body waves from time series of observed records that may contain surface waves 

(Bommer et al., 2009).  

We define the RMS-to-peak factor as  

 

rmsx

x
p max  .  (6) 

 

We also must distinguish between two different methods of estimating p that have 

resulted in distinctly different estimates of PSA (see Renault, 2010; and Figure 1 of this 

report). We refer to the method developed by Boore (1983) and updated by Boore (2003) 

as pB03. We refer to the method described by Der Kiureghian (1979) and updated by Der 

Kiureghian (1983) as pDK. We also use a few modifications to pDK described by Asfura 

(2008).  

Boore (2003) provided an update to the equation for pB03 given by Boore (1983). 

Both equations are based on equation 6.8 in Cartwright and Longuet-Higgins (1956). The 

update by Boore (2003) removes the integrable singularity in equation 6.8 by applying 

the change of variable z   , yielding  

 

pB 03  2 1 [1 exp(z2)]Ne dz
0



  ,  (7) 

 

where   m2(m0m4 )1/ 2 , and Ne is the number of extrema of x(t) , given by  
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Ne  max
1


m4 /m2 Drms,  1.002







 .  (8) 

 

Unlike Boore (1983; 2003), Der Kiureghian (1983) makes use of a shape factor () to 

compute pDK (denoted q in Der Kiureghian, 1979). It is a dimensionless ratio of spectral 

moments:  

 

  1
m1

2

m0m2

 .  (9) 

 

This shape factor has a value between 0 and 1 and is a measure of the dispersion of X( f ) 

about its centroid. According to Der Kiureghian (1979), Vanmarcke (1975) showed that  

is a measure of the dependence between zero crossings;  is inversely proportional to the 

cluster size of the zero crossings of x(t) . Thus, small values of  indicate that the 

assumption of independence of zero crossings is violated (i.e., the Poisson model 

assumption). In this report, we employ an empirical modification of  described by 

Asfura (2008): ) ,max(   , where  is the fraction damping of the SDOF system. It 

is beyond the scope of this report to assess the appropriateness and the effects of this 

modification. We apply it here because we believe it was used to produce the results 

discussed in Renault (2010) and resolving the differences between the contractor’s results 

that were identified in Renault (2010) is the primary goal of this report.  

In contrast to equation 7, Der Kiureghian (1983) defines the RMS-to-peak factor 

with the asymptotic form of the Cartwright and Longuet-Higgins (1956) integral   

 

pDK  2ln N zDrms  0.5772 / 2ln N zDrms  ,  (10) 

 

where N z  is the number of zero crossings, which is computed from the number of zero 

crossings assuming independence ( Nz ) using the following empirical relationship:  
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where  

 

Nz 
1


m2 /m0 Drms .  (12) 

 

Similar to the minimum value applied to  above, Asfura (2008) applies an empirical 

minimum value to N z  of 2.1.  

 

2.3 Definition of Residuals 

The goal of this report is to analyze the difference between the two different RVT 

methods of estimating the peak motion from the RMS motion (pB03 and pDK). The 

primary variable of interest for engineering design is PSA, so we define the residual as 

the ratio of the observed PSA to the predicted PSA: 

 

PSArr(T)  PSAo(T) /PSAp (T)  .  (13) 

 

Both PSAo and PSAp  are computed from the relative oscillator displacement time series 

[ u(t)], which is computed from either a simulated or a recorded acceleration time series 

[ a(t)]. PSA generally follows a lognormal distribution, which is why we define the 

residual as a ratio in equation 13. A ratio also has the advantage that it is not sensitive the 

large range of PSA values across the period range of interest for a single SDOF response. 

We have found that for the smaller values of PSA, the arithmetic difference may appear 

negligible while PSArr  may be as large as 2, indicating that the predicted values are half 

of the observed values. However, the arithmetic residual may be important for some 

applications, so we define  

 

PSAar (T)  PSAo(T) PSAp (T)  .  (14) 
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Note that the superscript rr in equation 13 indicates that it is the “residual ratio”, while ar 

in equation 14 indicates that it is the “arithmetic residual”.  

To compute PSAo(T) , we first compute the relative displacement response 

spectra as  

 

SD(T)  u(t) max  ,  (15) 

 

from which PSAo(T)  is defined as  

 

PSAo(T)  (2 /T)2 SD(T)  ,  (16) 

 

and )(tu is the SDOF response as a function of time for a specified period and damping 

(5% in this report). 

The key difference between PSAo and PSAp  is in the computation of SD. As 

indicated by equation 15, PSAo uses the actual maximum of the absolute value of u(t). 

In defining PSAp , our goal is to isolate the effects of the RMS-to-peak factor (p; equation 

6). Thus, we compute the urms from u(t) with equation 5, from which we estimate SD 

with the two different RMS-to-peak factors:  

 

SDB 03(T)  urms pB 03  , and (17) 

SDDK (T)  urms pDK  ,  (18) 

 

which yields two different PSAp :  

 

PSAB 03
P (T)  (2 /T)2 SDB 03(T) , and  (18) 

PSADK
P (T)  (2 /T)2 SDDK (T) .  (19) 

 

The RMS and peak factors make use of spectral moments computed from Fourier spectra 

of the windowed portion of the oscillator time series, using equation 4. The windowed 
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oscillator time series begins at the time where the Husid plot reaches 5% of its maximum 

and has duration Drms (as defined by Boore and Joyner, 1984). Since there are two 

different PSAp  which can be used to compute PSArr  and PSAar , there are four different 

PSA residual definitions: PSAB 03
rr , PSAB 03

ar , PSADK
rr , and PSADK

ar . For each residual, we 

report the geometric mean at a given period. For the simulations, we generate 100 

samples, while the number of records varies for each magnitude-distance bin for the 

recorded data. In the Results section, we focus on PSArr , but we include analogous plots 

for PSAar  in the Appendix 1 for comparison.  

 

3 RESULTS  

 

We are primarily concerned with earthquakes near M 6 because deaggregation 

indicates that this is the magnitude range that is most important for the hazard in 

Switzerland (Renault, pers. comm., 2010).  For this reason we use stochastically 

simulated records from an M 6 earthquake and recorded earthquakes from M 5.5 to 6.5. 

To investigate the magnitude dependence of the results, we also present results for 

stochastically simulated records from M 5 and M 7 earthquakes, and analogously, 

records from recorded ground motions from events within M 4.5-5.5 and M 6.5-7.5 bins. 

The events for each of these bins are described in Tables 1-3, which also give the number 

of records that we use from each event.  

The accuracy of the time-domain simulations is an important issue to address 

before we analyze the different RMS-to-peak factors. This is a consistency check 

between the SMSIM time-domain simulations and the target spectrum that these 

simulations are trying to match. Any mismatch that we observe here cannot be attributed 

to the different RMS-to-peak factors.  

We compare p
B03PSA  to the target PSA from the SMSIM ground-motion 

simulations to the target PSA computed from the Atkinson and Silva (2000) model for an 

M 6 earthquake in Figure 2. The left column of plots is for a distance of 5 km and the 

right column of plots is for a distance of 50.7 km. The key difference between the two 

curves in subfigures (a) and (b) is that p
B03PSA  is computed from 100 time domain (TD) 
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simulations, while the target PSA (labeled RV) are based solely on the amplitude spectra 

predicted by the Atkinson and Silva (2000) model. Subfigures (c) and (d) plot the 

arithmetic difference between the RV and TD curves, whereas subfigures (e) and (f) give 

the ratio of the TD curve to the RV curve. It is interesting to note that different 

conclusions about the difference between the TD and RV curves will be reached in some 

cases if the primary concern is the arithmetic difference (subfigures c and d) or the ratio 

(subfigures e and f). As an example, compare the two different residuals at 3 sec for the 

R=50.7 km plots (subfigures d and f). The arithmetic difference is negligible, while the 

residual ratio shows a significant difference, indicating that the TD PSA is 5-10% larger 

than the target PSA.  

 

3.1 Simulated Time Series 

In this section, we assume that the “true” or “observed” peaks are those in the 

SMSIM time-domain simulations. We plot PSAB 03
rr  and PSADK

rr  for simulated M 5, 6 and 

7 earthquakes at six different distances in Figures 3, 4, and 5, respectively (analogous 

figures can be found in Appendix A1 for ar
B03PSA  and ar

DKPSA ). The distances for the 

subfigures were chosen to be approximately the mid-point of the range of the distance 

bins for the NGA data. These results indicate that there is negligible distance dependence 

of PSArr  for the SMSIM simulated time series.  

Values of PSArr  greater than one indicate that the predicted peaks are smaller 

than the observed. Thus, we see that pDK consistently predicts smaller peaks than pB03 

(consistent with Figure 1 and the results described by Renault, 2010). Additionally, we 

note that both the pDK method and the pB03 method give nearly identical results for PGA, 

both of which consistently under-predict the observed value by 5-10%.  

Figures 3-5 also indicates that the residuals exhibit a negative slope with respect 

to period. The predicted peaks of both methods are generally within 10% of the observed 

peaks for periods between 0.04 and 3 sec. The pB03 method tends to be more accurate at 

short periods (0.04-0.2 sec) whereas the pDK method tends to be more accurate at long 

periods (1-3 sec). For intermediate periods, the observed peaks tend to fall between the 

two RMS-to-peak methods.  
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3.2 NGA Records  

In this section, we assume that the “true” or “observed” peaks are from the NGA 

West-2 records. Figures 6-8 are similar to Figures 3-5 except that PSAo is computed 

from time series from the NGA West-2 database. Additional differences are: (1) we 

include earthquakes with magnitudes ranging from +/-0.5 of the magnitudes in Figures 6-

8, and (2) each subfigure includes a range of Joyner-Boore distances (RJB). For those 

recordings for which RJB has not been included in the NGA West-2 flatfile, we use the 

epicentral distance (this was only needed for earthquakes in the M 4.5-5.5 bin). The 

number of ground motions included in each bin is reported in the title of each subfigure 

(analogous figures can be found in Appendix 1 for ar
B03PSA  and ar

DKPSA ). We do not use 

the vertical component records, and we process the two horizontal components as 

independent observations.  

Generally, we see similar trends in the PSArr  for the NGA data as we saw in the 

simulations. An unexpected difference is that the two different RMS-to-peak methods 

give more similar results for the NGA data than for the simulated data. We expected that 

the two methods would be more similar for the simulated data because there is no reason 

to expect that the zero crossings are clustered. In the absence clustering, the two methods 

should give similar results because the fundamental difference between the methods is 

the use of the shape factor  which is meant to account for clustering in the time series.  

The distance-dependence of PSArr  is another difference between the results from 

simulated records in Figures 3-5 and the NGA records in Figures 6-8. While PSArr  

appears not to be influenced by distance for the simulated data, the PSArr  do exhibit 

trends with distance for the NGA records. The PSArr  values tend to increase with RJB; 

the PSArr  in subfigure (a) of Figures 6-8 are centered around unity, whereas PSArr  are 

generally greater than one for almost all periods in subfigures (d) through (f) of Figures 

6-8 (distances greater than 40 km). Since the pB03 method generally predicts larger values 

than the pDK method, the pB03 method tends to give better estimates at longer distances. 

This observation should be qualified by noting that these results are sensitive to the 

estimate of Dgm. For recorded data we use D75-5 to estimate Dgm, which attempts to 

remove the influence of surface waves. The influence of surface waves tends to increase 
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with distance, and thus the estimation of Dgm is likely to be less accurate as distance 

increases. This may be the underlying cause of the distance trends noted above.  

We also wish to directly address trends in the differences between the Boore 

(1983; 2003) method and the Der Kiureghian (1979; 1983) method (ignoring the “true” 

values). Thus, we plot the ratio of p
B03PSA  to p

DKPSA  for the NGA data in Figure 9. 

Figure 9 (a) gives the ratio for M 4.5-5.5, (b) gives the ratio for M 5.5-6.5, and (c) gives 

the ratios for M 6.5-7.5. The data in each magnitude bin is also categorized by the same 

distance bins as in Figures 6-8. We see very similar trends across the different magnitude 

bins: the ratios are near unity at 0.04 and 3 sec, and increase to a maximum of 1.05-1.10 

near 0.2 to 0.3 sec. The maximum of the ratio decreases slightly as magnitude increases. 

The maximum B03/DK ratio in the 120 < RJB < 200 km is smaller and located at a larger 

period than the other distance bins for the M 5.5-6.5 and M 6.5-7.5 data. The 120 < RJB < 

200 km curve for M 4.5-5.5 only has 18 samples and so it should not be considered 

reliable.  

 

4 SUMMARY 

This report investigates the consequences of the differences between the Boore 

(1983; 2003) method of computing peak motions from RMS motions and the Der 

Kiureghian (1979; 1983) method. The key difference is that the Der Kiureghian method 

uses a shape factor that is based on the spectral moments to account for clustering of the 

zero-crossings of the time series.  

We compare the peaks computed with the Der Kiureghian method and the Boore 

method using both simulated and recorded time series. The comparisons of the two 

approaches to simulated motions (Figures 3-5) indicate that the Boore method may be 

more accurate at short periods (0.04-0.2 sec) while the Der Kiureghian method may be 

more accurate for long periods (1-3 sec). For intermediate periods, the Boore method 

tends to over-predict the peak motions by 5-10% and the Der Kiureghian method tends to 

under-predict the peak motions by 5-10%. As indicated by Figure 2, differences this 

small are near the limit of the accuracy of the RVT approach, as indicated by the 

differences between the RVT time domain PSA and the target PSA.  
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One could question the appropriateness of the conclusions based on simulated 

data because the clustering of the SMSIM time series may not be representative of real 

earthquake motions.  For this reason we also studied recordings of ground motion. The 

comparisons to the NGA records (Figures 6-8) indicate that the differences between the 

two methods are smaller than for the simulated data (e.g., Figure 9 vs Figure 1). It is not 

clear which method is more accurate because the overall magnitude of the residuals is 

sensitive to the duration of shaking, which is not known with precision. The trends in the 

observed data, however, are similar to the trends in the simulated data: the Boore method 

consistently predicts larger peaks than the Der Kiureghian method. The differences 

approach unit at small periods (0.04 sec) and larger periods (3 sec) with a maximum of 5-

10% at approximately 0.2 to 0.3 sec. The trend is relatively consistent across the 

magnitude-distance bins that we analyzed in this report for both simulated and recorded 

motions: M 4.5-7.5, and RJB between 0 and 200 km.  
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TABLES 
 
Table 1. NGA West-2 events included in the M 4.5-5.5 bin.  
EQID Earthquake Name Year Magnitude  Number of records 
0163 Anza-02 2001 4.92 147 
0161 Big Bear-02 2001 4.53 86 
0170 Big Bear City 2003 4.92 73 
0077 Coalinga-02 1983 5.09 41 
0079 Coalinga-04 1983 5.18 22 
0166 Gilroy 2002 4.90 72 
0051 Imperial Valley-07 1979 5.01 33 
0029 Lytle Creek 1970 5.33 27 
0150 Northridge-05 1994 5.13 18 
0151 Northridge-06 1994 5.28 126 
0039 Oroville-03 1975 4.70 27 
0114 Whittier Narrows-02 1987 5.27 142 
0160 Yountville 2000 5.00 58 
 
 
Table 2. NGA West-2 events included in the M 5.5-6.5 bin.  
EQID Earthquake Name Year Magnitude  Number of records 
0126 Big Bear-01 1992 6.46 82 
0171 Chi-Chi, Taiwan-02 1999 5.90 906 
0174 Chi-Chi, Taiwan-05 1999 6.20 984 
0076 Coalinga-01 1983 6.36 94 
0274 L'Aquila, Italy 2009 6.30 138 
0101 N. Palm Springs 1986 6.06 66 
0179 Parkfield-02, CA 2004 6.00 180 
0113 Whittier Narrows-01 1987 5.99 235 
 
 
Table 3. NGA West-2 events included in the M 6.5-7.5 bin.  
EQID Earthquake Name Year Magnitude  Number of records 
278 Chuetsu-oki 2007 6.80 1848 
158 Hector Mine 1999 7.13 253 
279 Iwate 2008 6.90 1101 
127 Northridge-01 1994 6.69 305 
280 Sierra El Mayor 2010 7.20 480 
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Figures  
 

 
Figure 1. PSA from simulated ground motions from an M 6 earthquake at distances of (a) 5 km 
and (b) 50.7 km. The corresponding ratios for the two different RMS-to-peak factors are given in 
(c) and (d).  
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Figure 2. Comparison of the target RVT PSA (labeled RV) and the p

B03PSA  computed as 

the geometric mean of 100 time domain (TD) simulations for an M 6 earthquake: (a), (c) 
and (e) are the PSA, the arithmetic residual between the RV and TD curves, and ratio of 
the TD curve to the RV curve at a distance of 5 km, respectively; (b), (d), and (f) are 
analogous figures at a distance of 50.7 km.  
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Figure 3. PSAB 03

rr  and PSADK
rr  for a simulated M 5 earthquake at six different distances: 

(a) 5 km, (b) 14.7 km, (c) 28.4 km, (d) 48.6 km, (e) 86.8 km, and (f) 161.3 km.  
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Figure 4. PSAB 03

rr  and PSADK
rr  for a simulated M 6 earthquake at six different distances: 

(a) 5 km, (b) 14.7 km, (c) 28.4 km, (d) 48.6 km, (e) 86.8 km, and (f) 161.3 km.  
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Figure 5. PSAB 03

rr  and PSADK
rr  for a simulated M 7 earthquake at six different distances: 

(a) 5 km, (b) 14.7 km, (c) 28.4 km, (d) 48.6 km, (e) 86.8 km, and (f) 161.3 km.  
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Figure 6. PSAB 03

rr  and PSADK
rr  for observed data from earthquakes from M 4.5 to 5.5 at 

six different distances: (a) 0 < RJB < 10 km, (b) 10 < RJB < 20 km, (c) 20 < RJB < 40 km, 
(d) 40 < RJB < 60 km, (e) 60 < RJB < 120 km, and (f) 120 < RJB < 200 km. 
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Figure 7. PSAB 03

rr  and PSADK
rr  for observed data from earthquakes from M 5.5 to 6.5 at 

six different distances: (a) 0 < RJB < 10 km, (b) 10 < RJB < 20 km, (c) 20 < RJB < 40 km, 
(d) 40 < RJB < 60 km, (e) 60 < RJB < 120 km, and (f) 120 < RJB < 200 km. 
 



PK/RMS Report 23 Thompson and Boore 
C:\pegasos_rvt_evaluation\pegasos_rvt_rms2pk_v1.1.doc 

 
Figure 8. PSAB 03

rr  and PSADK
rr  for observed data from earthquakes from M 6.5 to 7.5 at 

six different distances: (a) 0 < RJB < 10 km, (b) 10 < RJB < 20 km, (c) 20 < RJB < 40 km, 
(d) 40 < RJB < 60 km, (e) 60 < RJB < 120 km, and (f) 120 < RJB < 200 km. 
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Figure 9. Ratio of p

B03PSA  to p
DKPSA  for the NGA data for (a) M 4.5-5.5, (b) M 5.5-6.5, 

and (c) M 6.5-7.5.  
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APPENDIX 1: Arithmetic residuals for M 5, M 6, and M 7 events.  
 

 
Figure A1. PSAar  for 100 simulated time series for an M 5 earthquake at six different 
distances: (a) 5 km, (b) 14.7 km, (c) 28.4 km, (d) 48.6 km, (e) 86.8 km, and (f) 161.3 km.  
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Figure A2. PSAar  for 100 simulated time series for an M 6 earthquake at six different 
distances: (a) 5 km, (b) 14.7 km, (c) 28.4 km, (d) 48.6 km, (e) 86.8 km, and (f) 161.3 km. 
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Figure A3. PSAar  for 100 simulated time series for an M 7 earthquake at six different 
distances: (a) 5 km, (b) 14.7 km, (c) 28.4 km, (d) 48.6 km, (e) 86.8 km, and (f) 161.3 km. 
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Figure A4. PSAar  for NGA data for M 4.5-5.5 events at six different distances: (a) 0 < 
RJB < 10 km, (b) 10 < RJB < 20 km, (c) 20 < RJB < 40 km, (d) 40 < RJB < 60 km, (e) 60 < 
RJB < 120 km, and (f) 120 < RJB < 200 km. 
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Figure A5. PSAar  for NGA data for M 5.5-6.5 events at six different distances: (a) 0 < 
RJB < 10 km, (b) 10 < RJB < 20 km, (c) 20 < RJB < 40 km, (d) 40 < RJB < 60 km, (e) 60 < 
RJB < 120 km, and (f) 120 < RJB < 200 km. 
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Figure A1.6. PSAar  for NGA data for M 6.5-7.5 events at six different distances: (a) 0 < 
RJB < 10 km, (b) 10 < RJB < 20 km, (c) 20 < RJB < 40 km, (d) 40 < RJB < 60 km, (e) 60 < 
RJB < 120 km, and (f) 120 < RJB < 200 km.  
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APPENDIX 2: Sample SMSIM input parameter file.  
 
!Revision of program involving a change in the parameter file on this date: 
   12/16/09 
!Title 
Params for AS2000 (Atkinson and Silva, BSSA 90, 255‐‐274) source, applied to WNA 
!rho, beta, prtitn, radpat, fs: 
    2.8 3.5 0.707 0.55 2.0 
!spectral shape: source number, pf_a, pd_a, pf_b, pd_b 
! where source number means: 
!  1 = 1‐corner (S = 1/(1+(f/fc)**pf_a)**pd_a) 
!  2 = Joyner (BSSA 74, 1167‐‐1188) 
!  3 = Atkinson (BSSA 83, 1778‐‐1798; see also Atkinson & Boore, BSSA 85,  
!      17‐‐30) 
!  4 = Atkinson & Silva (BSSA 87, 97‐‐113) 
!  5 = Haddon 1996 (approximate spectra in Fig. 10 of 
!          Haddon's paper in BSSA 86, 1300‐‐1313;  
!          see also Atkinson & Boore, BSSA 88, 917‐‐934) 
!  6 = AB98‐California (Atkinson & Boore BSSA 88, 917‐‐934) 
!  7 = Boatwright & Choy (this is the functional form used by  
!                         Boore & Atkinson, BSSA 79, 1736‐‐1761, p. 1761) 
!  8 = Joyner (his ENA two‐corner model, done for the SSHAC elicitation  
!      workshop) 
!  9 = Atkinson & Silva (BSSA 90, 255‐‐274) 
! 10 = Atkinson (2005 model), 
! 11 = Generalized two corner model  
!      (S = [1/(1+(f/fa)**pf_a)**pd_a]*[1/(1+(f/fb)**pf_b)**pd_b])   
! pf_a, pd_a, pf_b, pd_a are used for source numbers 1 and 11, usually 
! subject to the constraint pf_a*pd_a + pf_b*pd_b = 2 for an omega‐squared 
! spectrum. The usual single‐corner frequency model uses 
! pf_a=2.0,pd_a=1.0; the Butterworth filter shape is given by  
! pf_a=4.0,pd_a=0.5.  pf_b and pd_b are only used by source 11, but dummy 
! values must be included for all sources. 
     9 2.0 1.0 0.0 0.0 
!spectral scaling: stressc, dlsdm, fbdfa, amagc, c1_fa, c2_fa, amagc4fa 
! (stress=stressc*10.0**(dlsdm*(amag‐amagc)) 
! (fbdfa, amagc for Joyner model, usually 4.0, 7.0) 
! c1_fa, c2_fa are the coefficients relating log fa to M in  
! source 11, as given by the equation log fa = c1_fa + c2_fa*(M‐amagc4fa). 
! fb for source 11 is given such that the high‐frequency spectral level 
! equals that for a single corner frequency model with a stress parameter 
! given by stress=stressc*10.0**(dlsdm*(amag‐amagc). 
! See Tables 2 and 3 in Boore (2003) for various source descriptions 
! (Note: the parameters in the line below are not used for most of the  
! sources, for which the spectrum is determined by fixed relations between 
! corner frequency and seismic moment, but placeholders are still needed)  
    100.0 0.0 4.0 7.0  0.0 0.0 0.0 
!iflag_h_eff, c1_log10_h_eff, c2_log10_h_eff 
!  If iflag = 1, compute an effective depth as  
!  h_eff = 10.0**(c1_log10_h_eff + c2_log10_h_eff*amag) and modify the closest 
!  distance by this depth: rmod = sqrt(r^2+h_eff^2)); use rmod in  
!  the calculations 
!  1 ‐0.05 0.15 ! Atkinson and Silva (2000) values 
   0  0.0 0.0 
!gsprd: r_ref, nsegs, (rlow(i), a_s, b_s, m_s(i))  (Usually set r_ref = 1.0 km) 
    1.0 
    2 
      1.0 ‐1.0 0.0 6.5 
     40.0 ‐0.5 0.0 6.5 
!q: fr1, Qr1, s1, ft1, ft2, fr2, qr2, s2, c_q 
    1.0 180 0.45 1.0 1.0 1.0 180 0.45 3.5 
!source duration: weights of 1/fa, 1/fb 
    0.5 0.0 
!path duration: nknots, (rdur(i), dur(i), slope of last segment  
    1 
      0.0 0.0 
     0.05 
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!crustal amplification, from the source to the site (note that this can include 
! local site amplification): namps, (famp(i), amp(i)) 
    11 
       0.01                 1.00 
       0.09                 1.10 
       0.16                 1.18 
       0.51                 1.42 
       0.84                 1.58 
       1.25                 1.74 
       2.26                 2.06 
       3.17                 2.25 
       6.05                 2.58 
      16.6                  3.13 
      61.2                  4.00 
!site diminution parameters: fmax, kappa, dkappadmag, amagkref 
! (NOTE: fmax=0.0 or kappa=0.0 => fmax or kappa are not used.  I included this 
!  to prevent the inadvertent use of both fmax and kappa to control the diminution 
!  of high‐frequency motion (it would be very unusual to use both parameters 
!  together.  Also note that if do not want to use kappa, dkappadmag must also 
! be set to 0.0). 
    0.0 0.03 0.0 0.0 
!low‐cut filter parameters: fcut, nslope (=4, 8, 12, etc) 
    0.04 4 
!rv params: zup, eps_int (int acc), amp_cutoff (for fup), osc_crrctn(1=b&j;2=l&p) 
    10.0 0.00001  0.001 1 
!window params: idxwnd(0=box,1=exp), tapr(<1), eps_w, eta_w, f_tb2te, f_te_xtnd 
    1 0.05 0.2 0.05 2.0 2.0 
!timing stuff: dur_fctr, dt, tshift, seed, nsims, iran_type (0=normal;1=uniform) 
    1.3  0.005 20.0 123.0 100 0 
 
 
 
 


