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A simple finite difference approximation to the elastic equations of motion is successfully 
used to solve various wave-propagation problems possessing analytical solutions. On this basis 
the method is extended to the problem of Love waves propagating across an ocean-continent 
type boundary. Numerical propagation of an initial transient solution results in seismograms 
at various distances. The Fourier transforms of these seismograms are used to calculate phase 
velocity, group delay, and amplitude-transfer coefficients for various seismometer combina- 
tions across the transition region. Some results are' the transition zone can have a small but 
noticeable effect on phase velocities measured between stations situated away from the zone; 
a phase-velocity anisotropy exists for waves propagating in opposite directions across the 
same array. In general, waves propagating into the region of thinning have anomalously 
high-phase velocities and vice versa. This is especially noticeable for velocities measured over 
the zone of transition, where the perturbations of the phase velocity of continent-to-ocean 
waves from the expected local phase velocity can exceed the variations expected from the 
continent-ocean structural differences. The behavior at a distance from the boundary justifies 
the well-established method of calculating effective group velocities by means of inverse 
averages of regional group velocities and also indicates a simple correction for the effect of 
the ocean-continent boundary that can be applied to calculations of earthquake-source 
mechanisms based on the method of amplitude equalization. 

INTRODUCTION AND SU•VI•VIARY 

The effect of lateral inhomogeneities on sur- 
face-wave propagation is becoming increasingly 
important as seismologists study the structure 
of the earth in ever finer detail. Perturbations 

from such structural complexities can be viewed 
either as noise when the usual simplifying 
assumptions of homogeneous, plane-layered, per- 
fectly elastic media. are applied, or as observa- 
tional quantities from which structural inter- 
pretations may be derived. In either case, it is 
important to have a method by which the 
theoretical effects of a given model can be 
computed. This paper describes such a method. 

For several reasons the computations in this 
paper are limited to two-dimensional horizontal 
shear motion: (1) less storage space and com- 
puter time are required than in the correspond- 
ing vector-elastic computations, and thus more 
realistic heterogeneities can be modeled within 
the space-time limits available; (2) as opposed 
to Rayleigh waves [Alexander, 1963; Kuo and 
Thompson, 1963], model experiments involving 
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Love waves are impractical, and thus a nu- 
merical model experiment must be used; (3) 
observations often indicate that Love waves 

are more sensitive to structural complexities 
than are Rayleigh waves. Although a sizeable 
literature exists on the approximate treatment 
of Love waves propagating in laterally hetero- 
geneous structures [e.g., Knopo# and Mal, 
1967; Ghosh, 1962], the assumptions made in 
these studies, usually stated in terms of the 
relative change of structure per wavelength, 
make the application of the results to realistic 
earth models of questionable value [Boore, 
1969]. For this reason the straightforward 
numerical integration of the relevant boundary- 
value problem is attractive, especially since 
present digital computers can handle significant 
problems at reasonable cost. 

In this paper a simple form of lateral hetero- 
geneity is treated' a uniform layer of non- 
constant thickness (but planar free surface) 
covering a homogeneous half-space. In particu- 
lar, the heterogeneity is confined to a region 
connecting two quarter planes in each of which 
the layer has a constant thickness (Figure 1), 
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and can thus be thought of as a simplified 
model of the ocean-continent boundary. By 
studying the dispersion and amplitude-transfer 
coefficients for various station combinations 

across the transition region, several interesting 
features that have relevance to actual observa- 

tions can be seen. Prominent among these 
features is the significant anisotropy which 
exists in the measured phase velocity of waves 
propagating in opposite directions across a 
given station array located over the transition 
region. Also of interest is the relative increase 
or decrease in the amplitudes of waves propa- 
gating across the region. This phenomenon is 
also anisotropic and is large enough in the par- 
ticular model studied to be diagnostic of the 
underlying structure. Of importance to studies 
of earthquake-source mechanisms via the ampli- 
tude equalization of surface waves is the indi- 
cation that, notwithstanding the complexities 
in the transition region, a simple correction 
can usually be applied for the influence of the 
boundary on the observed amplitudes. Although 
the above observations are based on a model 

of the ocean-continent transition, the technique 
can also be applied to calculations of the effect 
of local structure. Since seismometers are not 

placed conveniently with respect to the ocean- 
continent boundary, it is in the latter case that 
the technique can be most helpful. Application 
to measurements is now under way. 

In the next section of the paper will be a 
statement of the relevant boundary-value prob- 
lem, and in the section following the finite- 
difference formulation of the solution will be 

discussed. As a check of the method, the fourth 
section will be an application to problems 
possessing analytical solutions. With this as a 
background the solution of the originally posed 
problem, along with discussions of the seismo- 
logical implications, will be given in the fifth 
section. 

STATEMENT OF PROBLEM 

The formulation is that of a standard two- 

dimensional initial boundary-value problem. 
Consider the geometry in Figure 1, where a 
linear, isotropic, homogeneous (lib) material 
of rigidity •, density p• and nonconstant thick- 
ness overlies a lih material with elastic con- 

stants /•, p•. The interface between the two 
materials is in welded contact, and the upper 

Free 

Layer:m,•.• 

Half- space: 

Surface 

z 

Fig. 1. Possible inhomogeneity that can be 
treated with the finite-difference method. The 
plane z -- 0 is a stress-free surface; the two 
elastic materials are in welded contact at the inter- 
face z -- ,/ (x). 

surface is stress free. Let the thickness of the 

layer be v(x). The mathematical description 
of the problem is' 

Equations o/motion' 

= • V v• 

v = ( o / o ) + ( o j O z ) 
(1) 

i= 1,2 

Boundary conditions' 

(I•)1/(•Z) z-- 0 -- 

t. tl(Of)l/On)z=•(x) -- 

Initial conditions' 

(2) 

(v) , = o - f ( x , z) 

= gO,, z) 

where v•, v• are the horizontal (y) displace- 
ments in media 1 and 2 respectively. The sub- 
scripts are for clarity and are omitted when 
not needed. fi•, fi_o are the shear velocities and 
are given by fi, = (l•,/p,) •/2. O/On corresponds 
to a derivative normal to the interface. 

Although sources can be included quite easily 
in the formalism, the basic assumption in this 
paper is that we are dealing with well-formed, 
source-free Love waves that impinge on inhomo- 
geneous, complicated structures. Because of the 
basic forward-step nature of wave propagation, 
this problem can be formulated quite easily. 
Note in Figure 1 that the thickness of the layer 
for x < 0 is constant. We assume that, a 
transient disturbance has been set up by sources 
at infinity such that at the time t = 0 the wave 
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Fig. 2. A section of the discretized (x, z, t) 
space. Any point in the space is uniquely char- 
acterized by its x, z, and t indices m, n, and p. 
The seven points shown here are those used in the 
finite-difference approximation of the equation of 
wave motion discussed in the text. Note the un- 

even grid spacing with z. 

motion is confined to the region x < 0 and is 
appropriate to a Love wave propagating on a 
layer of constant thickness over a half-space. 
Such a disturbance will completely satisfy the 
equations of motion and boundary conditions. 
With this as a starting condition, the system is 
turned loose and the transient disturbance is 

propagated into the inhomogeneous region. This 
is accomplished by employing a finite-difference 
approximation to the problem. 

FINITE-DIFFERENCE FORMULATION 

Although finite-difference techniques have 
been in long use in several disciplines such as 
meteorology and civil engineering, the method 
has only recently been applied to seismological 
problems [Alterman and Karal, 1968; Alsop, 
1970]. In particular, elasticity problems have 
been extensively treated in mechanical and civil 
engineering, and useful techniques, such as the 
finite-element method [Zienkiewicz and Cheung, 
1967], have been developed. These problems 
deal mainly with statics or eigenvibrations, 
however, and thus are basically concerned with 
solutions to an elliptic rather than hyperbolic 
differential equation. I found the simple finite- 
difference formalism discussed below to be suf- 
ficient for the computations in this paper. 

Equations o[ motion. Basically, the medium 
is replaced by a gridwork of arbitrary spacing, 
such as in Figure 2. The five points at time 

level p constitute a computational 'star.' The 
Laplacian at a given time and spatial node 
point can be written in terms of the star dis- 
placements as (see Appendix 1) 

-- 2Vm.n •' Jr- Vm_l,n •} 

Vm,n • •Jm,n•__l• • (•) + + adJ 
where h•, h2 are consecutive z spacings. Note 
that three indices are required to specify the 
location of the grid point in the (x, z, t)-space' 
m, n are spatial indices, and p is a time index. 
Also notice that the Laplacian is evaluated at 
the time p. This, as explained below, leads to a 
requirement between the spatial and time in- 
crements that is necessary for stability, but it 
also leads to a simple solution to the equation 
of motion. Note further the uneven spacing 
in the z direction. This spacing takes advantage 
of the decay with depth of the Love-wave dis- 
placements and thus results in less computer 
storage. In practice, the z scaling started in 
the lower material, as this made the interface 
condition easier to compute. 

By approximating the time derivative in the 
same way as the Laplacian, the equation of 
motion in medium i at the point (m, n, p) can 
be written as 

1 nl•, n p-- 1 2 2 2 

(7) 

where the first two terms on the right-hand 
side arise from the time-derivative approxima- 
tion. In this form the e•cacy of writing the 
Laplacian at time p is seen' given v at two 
previous time points and several adjacent spatial 
points, the displacement at a new time p + 1 
can be computed by a simple formula. A dis- 
advantage, however, is that for stability of the 
computations the time increment cannot be 
chosen independently of the spatial increment. 
This limitation can be removed if the Laplacian 
is written as 

= , ov)•. 

+ 

where (•)•, d is symbolic for the s•andard 
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difference approximation as given in (6) but 
evaluated at tinhe point j [Richtmeyer and 
Morton, 1967]. This leads to a coupled system 
of equations for the displacement at the new 
time p + 1, and thus the computation time 
required to go from times p to p + 1 is longer 
than in the simple forward-step scheme. The 
advantage of the implicit scheme is that large 
time increments can be used, and thus the total 
computation time may be smaller than in the 
explicit scheme. If, however, the displacement 
field is changing fairly rapidly, the use of a 
large t, although stable, will lead to inaccuracies 
in the approximation of the time derivative, 
and then the advantage of the implicit scheme 
will be lost. For this reason and for convenience, 
the simple forward-step method was used in the 
computations discussed in this paper. 

Boundary conditions. The manner in which 
an interface condition is approximated is, as 
far as the author knows, guided mainly by ex- 
perience. It is difficult to predict a priori 
whether or not a given technique will lead to 
accurate, stable results. For instance, a method 
that works well for one type of boundary may 
be quite poor in a different application. As an 
example, the method described below for the 
interface boundary condition gives better re- 
sults for Love waves, traveling essentially hori- 
zontally, than for SH waves at vertical inci- 
dence to the boundary. A similar experience for 
P-SV motion is described by Alterman and 
Rotenberg [1969]. 

If the z index of the free surface is 2, the 
stress-free boundary condition (2) can be ap- 
proximated by the 'mirror-image' condition 

= (8) 

where the z spacing is assumed to be constant 
in this reg;_on. This equation is. derived by 
creating a fictitious layer at n -- 1 and writing 
a centered difference approximation to Ov/Oz. 
The advantages of this are that the approxi- 
mation of the derivative is of second order 

and that the equation of motion can be written 
at n = 2 (the real free surface). 

Of the several possible ways of treating the 
interface boundary condition, the simplest will 
be discussed below. It was found to be sufficient 

for the computations in this. paper. More detail 
on this and other techniques can be found in 
Boore [1969]. Consider Figure 3, in which a 
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portion of the spatial gridwork in the vicinity 
of the boundary is illustrated. Because the 
interface cuts the grid lines at an angle, the 
Laplacian at certain grid points near the inter- 
face cannot be approximated by a regular star 
wholly contained within one medium. The 
Laplacian at these 'funny points' can be written 
in terms of an irregular star (Appendix 1). 
This star will involve displacements at actual 
grid points and at 'curve points' defined by 
intersections of the interface with the grid lines. 
Thus in Figure 3 point A is a funny point, and 
point D is one of the two curve points that would 
be used in the irregular star placed at A. Assum- 
ing that displacements are known at all grid 
points, funny points, and curve points at times 
p, p -- I the difference equation can be used to 
generate new displacements at time p q- I at 
all points but the curve points.. The new curve- 
point values are obtained by difference approxi- 
mations to the interface conditions (3) and (4). 
First a normal is constructed at D. If the dis- 

placements at the normal and grid-line inter- 
sections C, C' are known then, equation (3) 
can be approximated' 

-- vc ')/ DC 

__-- •Lt2(VC,p+I __ VDP+I)/DC! (9) 
where DC, DC' are the lengths along the normal 
from C, C' to D. From this equation the new 
displacement at D is found. The displacement 
at C (and similarly for C') is approximated 
by linear interpolation between A and B. The 

ß 
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Fig. 3. A portion of the spatial grid near a 
curved interface showing the location of the 
normal to the boundary and the funny-points and 
curve-points discussed in the text. 
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Fig. 4. A schematic diagram summarizing both 
the boundary conditions used at the artificial 
interfaces and the location of the initial displace- 
ments. 

continuity condition (4) was used in the deriva- 
tion of (9). A basic assumption in the above 
derivation is that the new curve-point displace- 
ments must satisfy the continuity of displace- 
ment and stress but are not explicity required 
to satisfy the equation of motion. The curve 
points are influenced by the equation of mo- 
tion indirectly since the new displacements 
may be thought of as weighted averages of 
nearby displacements that are required to satisfy 
the wave equation. If the displacements on a 
given side of the boundary are smoothly and 
slowly varying with respect to the grid spacing, 
this simplification should be of little conse- 
quence in the accuracy of the computations. 

Although the two interfaces described above 
are the only real interfaces in the problem, 
the limitations of finite computer storage force 
the introduction of fictitious boundaries on the 

sides and bottom (Figure 4). For reasons ex- 
plained below, the displacement along the left 
side was set to zero for all times. The dis- 

placements along the bottom were either given 
exactly at each time step in problems posses- 
sing analytical solutions, or were approximated 
at each time by values. appropriate to the 
incident Love wave. In the latter case, spurious 
disturbances from this boundary could lead to 
contamination of the surface values if the bot- 

tom was not deep enough. Experiments with 
several different depths-to-bottom showed this 
effect to be negligible in the examples presented. 
The right-hand boundary was always far 
enough removed that, for the length of time 
used, the wave disturbance did not have a 

chance to cause significant reflections from this 
boundary. 

Initial conditions. As mentioned earlier, the 
initial displacements are taken to correspond 
to Love waves propagating along a layer of 
appropriate thickness. Instead of giving dis- 
placement and velocity at t = 0, we give theo- 
retical displacements throughout the grid for 
times t = 0 and At (p = 0, 1). The theoretical 
displacements are calculated by a Fourier syn- 
thesis of the component eigenfunctions such 
that the surface displacement at t -- 0 has the 
form of a Ricker wavelet [Ricker, 1945]. De- 
tails of the synthesis are given in Appendix 2. 
The dimensions of the grid are such that the 
input displacement is, for all practical purposes, 
wholly contained within the region bounded by 
the left-hand fictitious boundary and the region 
of sloping interface. Thus we set to zero dis- 
placements outside this region (Figure 4). The 
containment on the left side is, not necessary, 
for we can compute the theoretical displace- 
ment for the incoming wave along the left 
boundary at any time. Since, however, this 
requires either a Fourier synthesis over wave 
number at each depth and time point, which is 
expensive, or the initial computation and stor- 
age of displacements synthesized over frequency 
at each depth point, which is space consuming, 
the containment of the initial displacements 
within the described area was considered to be 

the most practical procedure. This is an illus- 
tration of the storage-space, computation-time 
tradeoff often encountered in finite-difference 

problems. 
It should be emphasized at this point that 

the only particularization to Love-wave dis- 
placement has been in the specification of the 
initial conditions. The equations of motion and 
boundary conditions are completely general. 
Except for possible fictitious boundary disturb- 
ances, the difference scheme should give the 
total wave solution to the formulated problem 
as the initial disturbance propagates into the 
heterogeneous medium. 

Stability and accuracy. The influence of the 
system as a whole (difference equations, inter- 
face equations, and initial displacements) 
should be considered in evaluating the stability 
and accuracy of a difference scheme. The diffi- 
culty of doing this in practice forces one to 
look at each component separately in the hope 
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that by so doing one can get a general idea greater than •r/Ax. To assure that the differ- 
of the total behavior. ence approximation is an accurate representa- 

It is quite easy to show [Boore, 1969] that tion of the actual derivative, the spatial fre- 
the truncation error inherent in (6) is such quencies should be even lower than this. For 
that in the limit Ax, At --> O, the difference example, the difference approximation to the 
equation approaches the differential equation second derivative of a function possessing 
as order Ax 2, At •. A standard stability analysis spatial frequencies as high as (3/10) ,r/Ax may 
[O'Brien et al., 1950] indicates the difference be in error by as much as 8%. 
equation is unstable unless Discussion. In summary, the solution to the 

(•At/Ah) • < « (10) formulated problem follows from several steps. -- First, the initial displacements at two times 
where Ah is the minimum spatial grid spacing are generated. Next, the grid is swept by the 
and /? is the maximum shear velocity. This difference equation (7) to generate displace- 
restriction is not severe but does require a ments at the next time step. Note that because 
smaller time step than seems necessary. As dis- many grid values are initially zero, only a 
cussed earlier, there are several ways of writing steadily increasing portion of the entire grid 
the difference equations so that unconditional need be swept at each time iteration. Follow- 
stability is achieved, but the resulting equations ing this the new curve and fictitious point 
are implicit and their solution is not as con- values are found from (8) and (9), and the 
venient as the forward time-step method used bottom boundary displacements are given by 
here. analytic values. The process is recycled as 

As previously mentioned, the influence of the many times as desired, with printer-plot 'snap- 
interface condition on the accuracy and stability shots' of the motion generated at desired times. 
is difficult to determine a priori, and an empiri- Displacement values from 'seismometers' lo- 
cal approach must be taken. Several observa- cated at arbitrary positions in the medium are 
tions can be made, however. The approximation stored at predetermined time intervals and after 
of (3) uses single-sided differences, which are completion of the time cycles are punched on 
of order Az rather than (Az) • as in the equa- cards to be used in subsequent processing, such 
tions of motion and free surface condition. as phase-velocity determination and transfer 
Furthermore, in contrast to the approximation ratio computations. It is interesting to note that 
of (2), the material near the interface is in although the initial displacement must be rather 
effect not required to satisfy the equations of pulse-like because of the limitations of storage 
motion since these equations are not explicitly space, the effect of the heterogeneity on the 
used in determining the displacement at curve time-domain representation of a more realistic, 
points for time p + 1. Another problem with dispersed wave train can be simulated by using 
the approach taken for the interface conditions the pulse results to derive the transfer spectrum 
is that the use of an irregular star at funny between any two seismometer locations. 
points implies that locally the stability condi- Typically, a grid 300 by 60 was used with 
tion (10) may not be satisfied. This disad- 300 time iterations. The structure of (7) is 
vantage is partially offset, however, since in such that only two rather than three spatial 
such a case material closer than usual to the grids need to stored. Running time, exclusive 
boundary is required to satisfy the equation of of the generation of initial displacements but 
motion, and thus the determination of the including output, was approximately 8 min 
boundary displacements as weighted averages on an IBM 360/65. Program optimization was 
of nearby displacements is more accurate. In not attempted. The initial displacements were 
practice, instabilities did not often arise from generated in a separate program and kept on 
the local violation of the stability condition. permanent file. Using a Fast Fourier Trans- 

The effect of the initial conditions is not as form, the synthesis of the Love displacements 
difficult to determine. Here we can appeal to at a given depth and time required about 0.3 
concepts of filtering and sampling theory seconds for 512 wave number points. The 
[Hamming, 1962]. To avoid aliasing, the initial amplitude spectrum of the initial displacement 
displacement should have no spatial frequencies was such that approximately 34 grid points 
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I 3 

2 4 

Fig. 5. The geometry and media labels œor 
four materials joining along a vertical interface. 
If the two conditions at the bottom are satisfied, 
an analytic solution to the problem oœ an incident 
Love wave can be œound. 

were contained within the dominant wave- 

length. 

APPLICATION TO PROBLEMS WITI-I KNOWN 

SOLUTION 

Vertical-boundary problem. As the first illus- 
tration, we shall apply the technique to a prob- 
lem first discussed by Higuchi [1932] and more 
recently by Sato [1961] and Alsop [1966]. In 
this problem (Figure 5) a Love wave on a 
combination of layer and half-space is incident 
to another layer and half-space combination 
separated from the first by a vertical boundary. 
If the elastic constants of the four materiMs 

are not chosen independently but satisfy the 
two relationships shown in Figure 5, the com- 
plete wave solution to this problem can be 
represented by an incident, reflected, and trans- 
mitted Love wave of a given mode. 

Calculated surface displacements generated 
by the difference scheme are shown in Figure 
6 for different instances of time. In this prob- 
lem, elastic constants were chosen such that the 
reflected wave would be prominent. The con- 
stants chosen are not intended to model a 

realistic boundary. The initially symmetric 
Ricker wavelet is distorted by dispersion, is 
reflected, and is transmitted. The slope dis- 
continuities at the vertical boundary, most 
obvious at times t = 70 and t = 84, are neces- 
sary consequences of the continuity of the stress 
component ,•. Another illustration of the same 
calculations is given in Figure 7, where printer- 
plot contours of displacement on a vertical pro- 
file are shown for different times. The top edge 

DAVID M. BOORE 

of each plot corresponds to the free surface. 
The variable grid spacing with depth produces 
a distorted picture of the vertical variation. 
The horizontal interface is drawn in the last 

plot (t = 112) and the vertical interface is 
given by the vertical line. Each plot can be 
viewed as a contour map of the displacements 
at each grid point for a certain instant of time, 
in which the area between every other contour 
is indicated by a given symbol. These plots are 
only intended to give a qualitative picture of 
the displacement variation in space and time, 
and thus the actual values of the contours are 

irrelevant. 

Theoretical displacements based on a Fourier 
synthesis of the eigenfunction solutions are in- 
distinguishable from the computed displace- 
ments illustrated in Figure 6. More details con- 
cerning this synthesis and the treatment of the 
interfaces (especially the four-intersection point) 
may be found in Boore [1969]. 

Dispersion problem. The example above in- 
dicated that the method works, but the results 
are not particularly useful. Of more interest 
is the simulation of a phase-velocity-measure- 
ment experiment. As a simple example of this 
and as a preliminary to the next section, the 
incident Love wave was allowed to propagate 
on the initial layer and hMf-space combination. 
Figure 8 shows seismograms for several locali- 

T=28 - • 
T :42 • 

T:70 • 

T :84 
T:98 

- I•0 0 [50 .'500 450 600 750 
(KM) 

Fig. 6. The surface displacements at different 
instants of time for the problem indicated in 
Figure 5. The location of the vertical interface is 
given by the dashed line. The various elastic and 
geometric parameters, fl• = 3.85, p• = 3.0, fi2 = 
4.75, p• = 3.65, fi.• : 4.23, pa = 7.44, ,/g• : 5.53, 
m = 8.07, H = 35.0, were chosen such that a 
large reflected wave would be present. The units 
of/g and p are km/sec and g/cm 3. 
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VERTICAL INTERFACE HORIZONTAL DISTANCE (KM) 

Fig. 7. Computer-generated contour plots of the spatial distribution of Love-wave dis- 
placements at different instants of time for the problem illustrated in Figure 5. The results 
here are derived from the same experiment as those in Figure 6. An explanation of the con- 
tours is given in the text. 

ties along the surface. In this figure the distor- tions). Due to the premature termination of 
tion of the initially symmetric pulse is quite the fourth seismogram, only three sites were 
obvious. By taking the Fourier transforms of used in this computation. Phase velocities for 
these seismograms, the phase velocities shown a run with a thinner layer (represented by 
in Figure 9 were calculated by the standard only three grid points) are also included. In 
least-squares technique (adapted to in-line sta- spite of the relative closeness of the stations, 

the computed phase velocities are in excellent 
agreement with the theory. This was expected 
since the seismograms themselves agreed with 

,. 

60 90 120 150 

(SECONDS) 

X=180I • •'- 4.85 
' • 4.65 I 

'-' 4.45 
X =400 

0 

• 4.25 

X=500 

4 4.05 

Fig. 8. Computed seismograms of Love waves 
for various sites along the surface of a layer of 

3.85 

THEORETICAL 
o MEASURED 

•a-4.75 pz=3.65 

i H=55 O• 
IO -• !0-' I0 ø 

K( rod•on / krn) 

Fig. 9. Comparison of theoretical and com- 
uniform thickness over a half-space. In this ex- puted phase velocities, plotted against wave num- 
periment Ax ---- 5 km and At _-- 0.7 sec. Theoretical ber. The measured values were derived from the 
wave forms are virtually identical to these corn- phase spectrum of seismograms such as in Fig- 
puted wave forms. ure 8. 
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units) of the initial transient, along with the 
measured transmission factor for the model of 
layer and half-space used in Figures 8 and 9 (with 
H ---- 35 km). Theoretically the transmission factor 
should be unity. The divergence at higher fre- 
quencies for site 4 is a truncation effect, since 
not enough of the time series at this site was 
generated. 

the theoretical displacements. For wave numbers 
on either side of the range illustrated, however, 
the phase-velociiy agreement was not good. For 
the larger wave numbers this was undoubtedly 
due to the relatively small amount of power con- 
tained in the initial displacements. The scatter 
at low wave numbers is attributable both to 

insufficient power and to insufficient station 
spacing. The amplitude spectrum of the initial 
wavelet is shown in Figure 10, along with the 
measured transmission factors for the thick-layer 
calculations. The transmission factors, defined as 
the amplitude spectrum at a given station nor- 
malized by the spectrum at the first station en- 
countered, can be a sensitive indicator of sub- 
surface structural variations. 

Of interest is whether the inaccuracies in the 

computations are steadily increasing with time, 
or whether they tend to damp out. The extreme 
case of instability, of course, is easy to recog- 
nize, but a gradual loss of accuracy is not. To 
study this, the Fourier transforms of the surface 
displacements at different times were compared 
with theoretical wave number spectra. The 
error was investigated in the wave number 
rather than the frequency domain since the 
displacements throughout the grid at any fixed 
time represent the same number of algebraic 
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manipulations. This is opposed to the time 
series at a given node point, in which each 
value represents a different number of com- 
putations. Since, however, the error propagates 
as a wave, the ideal would be to study the error 
spectrum in the frequency and wave-number 
space. 

The amplitude error is. defined as the per- 
centage of difference between the computed 
and theoretical wave number spectral ampli- 
tudes: 

error (k, t)---- 100.{ 'lV•(k' t)l- [Vc(k, t)l} [ t) l 
where the time and wave-number dependence 
has been indicated. The amplitude errors for 
the Love-wave computations with a 15-km 
layer (the layer being represented by only two 
grid points exclusive of the free surface and 
interface) are given as a function of time and 
wave number in the last three columns of 

Table la. The first column contains the wave 

number; the second column contains, for refer- 
ence, the theoretical amplitude for each wave 
number. This table shows that the absolute 

difference in amplitude is small, that the rela- 
tive error (e.g., error at t -- 84 compared to 
that at t -- 42) increases with time, and that 
the computed amplitudes are consistently lower 
than the theoretical amplitudes. The aberrant 
behavior at k -- 0.07363 in the relative in- 

crease of error with time is probably related 
to the small amount of power in the initial 
displacements at this wave number. 

The phase information is contained in Table 
lb, where the error measure is defined by the 
relation 

TABLE la. Error in Amplitude as a Function of 
Wave Number and Time 

Theoretical 

k Amplitude t = 42 84 126 

0.01227 0.15 --0.43 -- 1.15 -- 1.90 
0.02454 0.35 -- 1.64 --2.21 --2.86 
0.03682 0.30 --2.36 --3.36 --4.49 
0.04909 0.15 --2.54 --4.11 --4.54 
0.06136 0.04 --2.56 --2.80 --3.96 
0.07363 0.008 -- 1.80 --8.70 --0.85 

Note: 

See text for explanation. 
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•ii----100'{ [•it -- (•it] --[q•i•- (•i•]'} lS't:km 
where •b,', •b, c are the theoretical and calculated •20km 
phases (with phase integers added when neces- 
sary to account for the multivaluedness of the 
measured phase spectra) at time t -- t, (42, •,=4.75 ,, p,=•.65" 
84, and 126 sec). 3•b,• expresses the relative 
error in the phase difference between two sites 
and hence is equivalent to the error expected 
in the phase-velocity calculations. As in the Fig. 11. Schematic diagram of the nonuniform 
case of amplitudes, Table lb shows that the wave guide problem. The v's at the top represent possible seismometer sites (see text). Grid spac- 
erPoP again seems to be biased (corresponding ings of Ax _-- 5 km and At: 0.7 km were used. 
to an overestimation of phase velocity) but it 
is not obviously increasing. 

The errors indicated in Tables la and lb, stations, at each of which a time series was 
based on wave-number domain calculations, generated, were arranged in the following man- 
and the errors implied by the frequency-domain ner with respect to the transition region: one 
results in Figures 9 and 10, indicate that the station was placed on the near side of the 
Love-wave finite-difference calculations are of transition zone as seen from the incident wave, 
sufficient accuracy to warrant an investigation stations were put on either end of the zone, one 
of a more complicated problem. The remainder was placed in the middle, and two were placed 
of this paper will be a discussion of such a on the far side of the zone. Thus in Figure 11 
problem. the v's represent seismometer sites I through 

APPLICATION TO SLOPING LAYER PROBLEM 6 for a wave incident from the left. The num- 
bering always starts with the first site en- 

The geometry and elastic constants for the countered. Thus the same geometrical location 
problem of an idealized ocean-continent bound- will have two site numbers depending on the 
ary, with a crust of 15-km thickness increasing direction of the incident wave. 
to one of 35-km thickness over a distance of In subsequent discussion the terms updip and 
120 km, are illustrated in Figure 11. A water downdip are used to indicate the direction of 
layer is not included. In order to study the the incident wave; downdip represents propa- 
effect on measured phase velocities of two-way gation from the ocean to continent and updip 
propagation across a given station pair, com- is from continent to ocean. Phase velocities 
putations were performed with the initial Love- calculated for the following station locations 
wave incident from both directions. The initial will be illustrated: thin side (1-2) and thick 
pulse was identical to that used in the flat-layer side (4-5), both of which are underlain by a 
dispersion experiment described above. Six flat Moho; thin-middle (2-3), middle-thick 

(3-4), and thin-thick (2-3-4), situated over 

TABLE lb. Error in Phase as a Function of the region of the sloping Moho. The station 
Wave Number and Time numbers in parentheses are appropriate to 

--0.02 --0.22 
--0.21 --0.10 
--0.32 --0.31 
--0.26 --0.22 
--0.32 --0.35 
--0.26 0.00 

0 01227 
0 02454 
0 03682 
0 04909 
0 06136 
0 07363 

Note' 

See text for explanation. 

downdip propagation. Furthermore, for each 
•23 direction of inci'dence two station pairs were 

used on the far side of the transition region. 
-0.41 (4-5; 5-6). Doing this gives a qualitative check 

0.00 on the solution, for the farther the wave gets 
-0.30 from the boundary, the closer the measured 
-0.19 phase velocity should approach the theoretical 
-0.37 

0.26 dispersion for a fiat layer of the appropriate 
thickness covering a half-space. 

Figure 12 contains two-way phase velocities 
measured over regions with a fiat Moho. For 
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Fig. 12. Measured phase velocities over flat 
portions of the wave guide. The solid lines are 
the appropriate theoretical values. The graphs 
have been horizontally separated for clarity. The 
crosses refer to updip propagation in the left- 
hand graph and downdip in the right-hand graph. 

clarity the thin side and thick side graphs have 
been separated. We see that the measured dis- 
persion is anisotropic in that it depends on the 
direction in which the wave is traveling, and 
that the anisotropy tends to disappear for 
shorter wavelengths. This dependence on wave- 
length agrees with intuitive expectations. since 
for stations removed from the boundary it is 
only the longer wavelengths that should be 
'seeing' the transition region. In line with this, 
the phase velocities calculated from the station 
pair most distant from the transition region 
(given by crosses in Figure 12) appear to be 
approaching the theoretical curve, as we would 
expect. The critical distance is on the order of 
one wavelength; for stations farther from the 
transition than a wavelength, the effect will be 
small. Even if the measuring array is closer 
than this to the transition zone, a reasonable 
approximation to the local structure can be 
obtained by basing interpretations on an aver- 
age of down- and updip phase velocities. A 
further observation is that the downdip propa- 
gation gives, in this model, consistently lower 
phase velocities than does updip propagation. 

The phase velocities measured over the 
transition region show similar features (Fig- 
ure 13): the phase velocity is strongly aniso- 
tropic, and the downdip propagation velocities 
are consistently lower than are the updip 
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velocities. Here, however, the anistropy is 
greatest in the middle range of wave numbers. 
The phase velocities for smaller wave numbers 
are isotropic and biased. Also of interest is 
that the velocity difference between up- and 
downdip propagation can exceed the difference 
due to structure alone, and that downdip propa- 
gation is less perturbed than is updip propaga- 
tion. Here an average of up- and downdip 
propagation is not as effective in removing the 
perturbations as it was when the measurement 
stations were removed from the transition re- 

gion. 
Although the phase velocity contains all the 

information that exists in the phase spectrum, 
it is instructive to look at the group delays 
separately. The group delays for each site 
were computed from the definition 

= 

by approximating the derivative by a two-sided 
difference. The theoretical group delays were 
found for each frequency by approximating the 
boundary by a series of fiat layers and accumu- 
lating the group delays for each layer. This 
theoretical approach is equivalent to a first- 
order WKBJ solution to the problem. The 
resulting difference between the theoretical and 
measured group delays is plotted against fre- 
quency in Figure 14 for both up- and downdip 
propagation. As might have been expected from 
the behavior of the phase-velocity curves, the 

i ] ] i- • r'T FT1' T T T ? , , I 1 I I--•q'-- T ' , , o DOWNDIP 

UPDIP 

,5O5 

lo 
485 ß o eee o 

465 oo øo o 
%o o ø 

445 

405 
.01 05 I, 01 05 .I,.01 05 

WAVE NUMBER (RAD/KM) 

Fig. 13. Phase velocities measured over the 
region of nonuniform thickness. The solid lines 
are theoretical values for the thin- and thick- 

laver models and are for reference only. 
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transition zone contributes the most perturba- 
tion. The similar character of the delay at sites 
4, 5, and 6 indicates that passage through the 
transition zone has caused a relative advance 

of up to 2.0 sec at the low frequencies and 
delay of less than 2.0 sec at the high frequencies 
in the case of updip propagation. Downdip 
propagation, again as in the case of the phase 
velocity, is not as affected by the transition 
zone. The implications of these results are that 
the standard practice of deriving an effective 
group velocity for a composite path by using 
an inverse average of the component parts is 
justified, and that measurements of group ve- 
locities between an epicenter and station will 
be negligibly biased by the effect of the ocean- 
continent margin. This latter implication is 
especially true since the epicenter and station 
locations are usually such that the sense of 
propagation will be downdip (from the ocean 
to the continent). 

Up to this point only the phase information 
of the computed seismograms has been utilized, 
but the amplitude information is also useful. 
A convenient way of presenting this informa- 
tion is in terms of transmission factors (defined 

earlier) at the various stations (Figure 15). 
Note that the curves for sites 4, 5, and 6, all 
located on the far side of the transition region, 
have, similar shape and tend to approach the 
theoretical curve with increasing distance from 
the zone. This theoretical curve is based on the 
simple assumption that all the energy flow in 
the incident wave is somehow transferred into 
the wave guide represented by the layer and 
half-space combination on the far side of the 
transition zone. No reflected energy or mode 
conversions are taken into account. Several 
other approximate theories, all of which take 
partial reflections into account, give theoretical 
curves similar to the ones in Figure 15 [Boore, 
1969]. The theories include a hybrid taken from 
Knopof] and Mal [1967] and Alsop [1966], and 
a theory developed from analogy with a trans- 
mission-line problem. I should mention that 
although at a large distance from the transition 
region the theoretical and calculated transmis- 
sion factors are similar, this similarity breaks 
down drastically in the vicinity of the region. 
This is true for both the predicted phase ve- 
locity and the transmission factors. Since the 
approximate theories take no account of scat- 
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Figs. 14. The difference between theoretical and measured group delays versus frequency 
for the various sites. The solid lines are for downdip propagation and the dashed lines t•or 
updip. 
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Fig. 15. Transmission factors. 

using a higher order generalization of the inter- 
face-condition approximation gave similar re- 
sults; (3) the phase velocities from an updip 
run in which the layer decreased in thickness 
from 35 km to 25 km rather than 15 km showed 

similar perturbations, but of smaller magnitude 
(Figures 16 and 17); (4) application of the 
curved boundary approximation to the problem 
of an $H wave vertically incident from below 
on a layer with a bump in it gave results that 
agreed, after application of a suitable exponen- 
tial window, with those computed via the tech- 
nique of Aki and Larner [1969]. 

From the tests (1), (2), and (4) above, I 
estimate that the computed phase velocities are 
accurate to within at least 3% and usually 1.5% 
in the period range illustrated, with the pos- 
sible exception of some of the values on either 
end of the range where the small amount of 
power, truncation, or large wavelength relative 
to the station spacing can reduce this accuracy. 
The amplitude-transmission factors are good to 
within 5% over most of the period range. A more 
complete discussion of the tests above and the 
corresponding accuracy is given in Boore [1969]. 

It is tempting to point out that the tendency 
for updip propagation to give high phase ve- 

tered fields, which require other waves like 
leaking modes, this leads to the conclusion that 
such waves must be an important component 
of the total disturbance in the transition region. 
I expect that such modes become increasingly 
less important as the slope of the interface is 
decreased. 

In problems such as this that possess no 
analytical answer, the correctness of the results 
must be judged both on the basis of experience 
with simpler problems and the qualitative be- 
havior of the solution. As the previous section 
indicated, the finite-difference technique gave 
excellent results for simple models, but in 
neither of the examples presented was the 
curved-boundary approximation used. We must 
allow for the possibility that the method of 
treating the interface conditions across the 
curved region leads to fictitious sources that 
give rise to the peculiar behavior of the phase 
velocities and transmission factors. The evi- 

dence against this possibility are several: (1) 
an updip run with Ax -- 3.0 km rather than 
5.0 km gave virtually identical results; (2) 

I o H=15 Model 
ß H=25 Model 

5.05 1 o x H=25 Model,Station Pair 5-6 
0 0 4.85 I-- o o 

|ß• Oo 
/ v ß 0 ß 

o 

THIN :SIDE THICK SIDE 
4.05 -- 

,01 .05 .I,.01. .05 .I 

WAVENUMBER (rad./km) 

Fig. 16. Comparison of measured updip phase 
velocities over fiat portions of the interface for 
models in which the layer thins to 15 km (pre- 
vious case) and 25 kin. 
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locities is expected if one thinks of the apparent 
surface velocity of a traveling wave bouncing 
between the free surface and the interface. This 

result, however, is opposite to that found by 
Pec [1967] for Love waves propagating in a 
wr•dm• P•r. cl•f•rrninr•d f,h• lnr, nl phn,q• velocity 
by requiring constructive interference, and thus 
considered both the wavelength and ray path of 
the bouncing wave. It is not clear that Pec's 
analysis is applicable here, for the comparability 
of the incident wavelength and the horizontal 
extent of the transition zone means that the 

wave in effect does not see a wedge. 

DISCUSSION 

In summary, the finite-difference method 
appears to be a useful tool in dealing with 
fairly complex structures. The method is most 
useful in the near-field region of sources, where 
the sources can be either real or, as in this paper, 
effective sources introduced by complexities 
along the travel path. In the latter ease we use 
analytic results to describe the wave motion 
between the real, physical source (in this paper 
the source is at x -- --m) and the region of 
inhomogeneity, and we use the finite-difference 
scheme to propagate the disturbance through 
this region. Application to the problem of Love 
waves propagating across an idealized ocean- 
continent boundary indicates that significant 
perturbations of both the phase and amplitude 

j I I i I l l•ll I - ¾•'--[-•--I-i• I I I I J I I• 
J o H"15 Model 

ß H=25 Model 

5.05 F o 
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Fig. 17. Comparison of measured updip phase 
velocities over the transition zone for the two 
models mentioned in Figure 16. 

h2 

Fig. 18. Lattice used in deriving a finite differ- 
ence approximation to the Laplaeian. 

spectrums can occur in the vicinity of the transi- 
tion region, and that these perturbations become 
less important at a distance from the boundary. 
In particular, the behavior at a distance justifies 
the well-established method of calculating 
effective group velocities by means of inverse 
averages of regional group velocities, and also 
indicates a simple correction for the effect of 
the ocean-continent boundary that can be ap- 
plied to calculations of earthquake-source 
mechanisms based on the method of amplitude 
equalization. The behavior of the amplitude 
and phase in the transition region indicates 
that observable effects should exist for Love 

waves propagating across structural complexi- 
ties within the continent, and this suggests a 
tool for the study of these complexities. 

Application to problems involving inhomo- 
geneous, inelastic materials should be possible 
without significant increases in either computa- 
tion time or storage space. Rayleigh wave and 
P-SV problems can be handled in a similar 
fashion, but at cost of approximately twice 
as much time and space. Application of the 
finite-difference method to realistic three-dimen- 

sional problems requires an order of magnitude 
more time and space and therefore is not prac- 
tical at the present time except under extraor- 
dinary circumstances. 

APPENDIX 1. FINITE DIFFERENCE 

APPROXIlV•ATION TO TI-IE 

LAPLACIAN 

Consider the irregular star in Figure 18. Di- 
agonal points are included so that an approxi- 
mation to the mixed derivative 
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O•'y/Ox Oz 
can also be derived if desired. Such a derivative 

occurs in the general vector elastic equations 
but will not be evaluated here. We fit a two- 
dimensional Lagrange polynomial surface to the 
nine points and then differentiate this function 
to obtain the approximation to the actual 
derivatives. Such a polynomial can be repre- 
sented by 

m+l 

y•(x, z) = • • •fiiYii (A1) 
i--m--1 i:n--1 

where y, is the known value of y at x -- 
z -- zj, and 7- are functions of (x, z) given by 

•(x, z) = [•(x, z)/•(x•, z•)] (•) 
where 

m+l n+l 

z) -_- II II (x - x)(z - 
k•m-1 l---n-1 

the basis of the construction is that y•(x,, z•) -- 
y,. The polynomial y• is, of course, only an 
approximation to the actual function y, but we 
assume that the actual function is smooth 

enough so that y•(x, z) -- y(x, z) in the local 
region around xm, z•. Taking the second deriva- 
tives of y• with respect to x and z, and evaluat- 
ing the result at x -- x•, z -- z• yields the 
desired expression for the finite difference ap- 
proximation of the Laplacian: 

2 
(V•y) ..... = ll(l• •- 12) Ym-•,,, 

2 2 

l•12 Ym,• -]- 12(l• -]- 12) Ym 
2 2 

+ hi(h1 -]- h2) y .... 1 Ym• 

2 

+ h2(hl + h2) Ym,n+l (A3) 
The four cross terms do not appear. 

APPeNdix 2. SYNTI-IESIS OF LOVE •SPLACE- 
•ENTS USING FAST FOURIER TRANSFORMS 

We are interested in the Love displacement 
at some point x, z, t when the displacement on 
the surface at t -- 0 is given by the function' 

v(x, O, O) = g(x) (A4) 

Let F(k, z, t) be the eigenfunction solution to 
the source free Love-wave problem where a 
spatial transform over the x (horizontal) direc- 
tion has been taken. The time factor will always 
appear in the form •ot, but from the dispersion 
relation for the particular problem being con- 
sidered • -- •(k). Thus k, z, and t can be con- 
sidered independent variables. The actual evalu- 
ation of F for a given k can be done analytically 
in the simple case of one layer or can be deter- 
mined numerically using Haskell matrices in 
more complicated problems. 

Thus a general solution of the Love-wave 
problem in the space-time domain can be deter- 
mined by adding up eigenfunctions with appro- 
priate weighting factors: 

1 t)ei• v(x, z, t) = • A(k)F(k, z, dk (A5) 
Expressing g(x) as a Fourier integral and 
applying (A4) we find 

g(x) = • 6(•)e • • 
.4(•)y(•, o, o) = a(•) 

or 

(A6) 

Our problem now is to evaluate this integral. 
The reason for integrating over wave number k, 
as opposed to frequency •, is that we can use a 
Fast Fourier Transform (FFT) to evaluate v at 
many values of x at one value of t and z. Thus 
we can efficiently generate the initial displace- 
ments used in the difference technique. 

Evaluating (A7) by means of the Fast Fourier 
Transform is quite straightforward, but some 
details are worth mentioning. We assume that 
a subroutine which can do forward and back- 

ward transforms of 2 • complex data points is 
available. Then with the notation 

(data)• 

NAx G[(i -- 1)Ak] F]'(i -- 1)Ak, z, t] Y[(i- •)•, •/, 0] 
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and Ak -- 2rr/NAx, we fill the complex input 
array with (data),, i -- 1, 2, ... , N/2. Here 
Ax is the spatial sampling used in the problem. 
Note the normalization 1/NAx. This guarantees 
that (A4) holds when v is evaluated using 
FFT. 

For input points i -- N/2 + 1 to N we use 
the following' 

Re (data), = Re 

Im (data), = --Im 
This is necessary since the symmetry of the 
FFT assumes that (data)•, N/2 < i _< N 
correspond to negative frequency points and 
because v(x, z, t) is real. Thus the transform 
of v, V(k, z, t), has the property 

z, = z, 0 

where • indicates a complex conjugate. We now 
apply the FFT to the complex array (data), 
and end up with another complex array (re- 
sult),, i - 1, N. Here 

(r Im esu •-- 0.0 

and Re(result), contains the answer for which 
we are looking. 

Because of the periodic nature of the finite 
Fourier transform, some juxtaposition of terms 
is required if the initial surface displacements 
are nonzero for x < 0. The corresponding dis- 
placements will be found at the end rather than 
the beginning of the array containing the re- 
sults. This transposition is easy to accomplish, 
but could be avoided by shifting the x-origin 
in the beginning such that all initial displace- 
ments lie to the right. 

Thus with one call to a FFT subroutine we 

have evaluated the integral (A7) at a given z, 
t, and N values of x. 
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