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The transient solution to several problems that was obtained by numerical integration of equa- 
tions of motion using a finite difference (FD) technique is compared with the complex-frequency 
solutions obtained by the approximate wave theoretical (AL) method of K. Aki and K. L. Larner. 
The excellent agreement between the two solutions not only provides a comparative check on the 
accuracies of the two techniques, but also demonstrates that the interpretation of the AL solution is 
comparable to the Fourier transform of the transient solution premultiplied by an exponential 
window. Most of the paper is devoted to a discussion of two models that are relevant to the 
engineering-seismological study of earthquake motions in soft layers of varying thicknesses. The 
FD and AL solutions show that lateral reverberations of waves produced by the nonplanar 
structure form complex interference patterns that are not predicted by the usual flat-layer ap- 
proximations. In one example, constructive interference enhances the peak amplitude of the 
transient motion over the center of the basin by a factor of 3 relative to the flat-layer solutions. The 
results indicate that a realistic appraisal of earthquake hazards in areas underlain by soft surficial 
layers should include the effect of nonuniformity in the structure. 

Two methods have been discussed recently for 
the treatment of seismic-wave propagation in 
complex structures. One solution uses numerical 
finite-difference integrations of the equations of 
dynamic elasticity [Alterman and Karal, 1968]; 
this method (called the FD method here) deals 
with the propagation of transients in the time 
domain and is useful for surface-wave problems 
[Boore, 1970]. The other method, called here the 
Aki-Larner (AL) technique, is a single-frequency 
solution based on an assumed form for the dis- 

placement field [Aki and Larner, 1970]. The AL 
technique is best suited to problems in which 
body waves impinge on crustal irregularities. 

Both techniques are based on approximations 
and thus it is important to check the accuracy 
of the solutions. The standard approach is to 
vary some of the numerical parameters, such as 
grid sizes in the FD method or the number of 
scattered waves in the AL method. This approach 
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is useful, but it is more satisfying to compare the 
results of a given method with the results from 
a completely different method. Such a comparison 
was the basic motivation for the work discussed 

here. By applying the two methods to the same 
physical problem, a comparative check of the 
solutions can be made. 

Two different problems are considered here: 
in the first, a layer representing a thin crust with 
a root overlies a half-space with appropriate 
elastic constants for the mantle; in the second, 
a low-velocity sediment-filled basin lies on top 
of a half-space of more rigid materiM. Both 
problems are two-dimensional and involve the 
seismic motions induced by vertically incident 
SH waves. Besides acting as vehicles for the 
comparison of the two methods, the problems 
here are of interest in their own right. This is 
especially true of the soft-basin problem, a 
discussion of which forms the bulk of this paper. 
This problem is directly related to the important 
one of ground-motion enhancement in sedi- 
mentary basins. 

DESCRIPTION OF METHODS 

AL solution. Although the two methods are 
more fully described in the literature referenced 
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above, a brief discussion is given here. In the 
AL solution a plane single-frequency wave is 
assumed to be incident from below. This wave 

causes a displacement field represented by super- 
position of plane waves of unknown complex 
amplitudes propagating in many directions. 
Inhomogeneous plane waves are allowed. The 
total motion is an integration over all directions, 
or equivalently, over horizontal wave number k. 
Under the assumption that the irregularity in 
structure repeats itself horizontally, the integral 
is replaced by an infinite sum. Truncation of this 
sum and application of the interface conditions 
yield a system of equations that are solved for 
the complex scattering coefficients. The equations 
can then be substituted back into the finite-sum 

representation of the total displacement to yield 
the motion and stress at any point in the medium. 
It is important to note that this is a single- 
frequency solution. 

•FREE SURFACE 

interfoce_•••ASSUMED ZERO 

'-•-avefro'nt• 

INITIAL 

DISPLACEMENTS 

Fig. 1. 

ONE- DIMENSIONAL ANALYTICAL SOLUTION 

A schematic diagram giving the general FD solution. The finite difference (FD) 
method gives a result in the time domain. In 
this method a difference equation approximation 
is first made to the equations of motion and 
boundary conditions [Boore, 1970]. The difference 
equation is then solved in a recursive manner by 
using initial displacements and velocities to start 
the solution. The initial conditions are chosen as 

required by the specific problem. In the examples 
presented in this paper analytic values were 
used to simulate the propagation of vertically 
incident SH waves in the lower half-space. 
(All the examples involve a layer overlying a 
half-space.) The transient form of this motion 
was chosen, for convenience, as a Ricker wavelet 
[Ricker, 1945]. We can require the initial dis- 
placements to be far enough from the interface 
so that the analytical initial displacements are 
almost zero in the region of heterogeneity 
(Figure 1). This stipulation justifies our use of 
simple analytical values to start the problem. 

Also shown in Figure I are some of the bound- 
ary conditions used. Using a symmetric structure 
and vertically incident SH waves enables us to 
solve for the motion in just half the region, 
as shown, with the left boundary (plane of 
symmetry) treated as a free surface. In the FD 
solution the other vertical boundary and the 
bottom are artificial boundaries imposed by the 
requirements of computer storage space. On 
these boundaries the motion at each time step 
is given as if the basin were not present. This is 

shape of the models considered in this paper, the 
boundary conditions used at the artificial boundaries, 
and the location of the initial displacements. The 
models are symmetric about the left edge. 

an approximation and can lead to spurious 
motion at the surface after the wave, reflected 
downward from the bump, is again reflected by 
the impedance mismatch at the artificial bound- 
aries. In practice the artificial boundaries are 
placed as far from the region of heterogeneity 
as is economically feasible. 

Comparison. To compare the FD solution 
with the AL solution, Fourier transforms of the 
time-domain solutions must be computed. There 
are, however, several practical difficulties in the 
computation. For one, the spurious disturbances 
from the grid boundaries can contribute signifi- 
cantly to the later parts of the record. Further- 
more, the surface response in some problems 
reverberates for quite a while, and because the 
finite-difference solution calculates this response 
only up to some finite time, noticeable truncation 
effects may be encountered. Thus it is desirable 
to apply a window to the time series such that 
the later amplitudes will be diminished. The 
question arises as to the type of window that 
should be applied. According to the convolution 
theorem, the resulting spectral amplitudes must 
be compared with a smoothed version of the 
spectra computed from the AL technique. This, 
in general, would require a number of AL solu- 
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tions at nearby frequencies and thus would be 
cumbersome and expensive. As discussed in an 
earlier paper [Aki and Larner, 1970], however, 
this smoothing can be conveniently accomplished 
by computing a single AL solution by using 
complex frequency. Phinney [1965] pointed out 
that this corresponds to using an exponential 
window in the time domain with decay time 
given by the reciprocal of the imaginary part of 
the radial frequency. Thus by using this partic- 
ular form for the window, we can directly 
compare the FD and AL solutions. 

CRUST-MANTLE PROBLEM 

In this section, we discuss a model in which the 
slope of the interface is relatively steep; in the 
section following, a model with a large velocity 
contrast and a less steep slope is studied. For 
both models the incident wavelengths are com- 
parable to the dimensions of the heterogeneity, 
thus precluding an accurate solution by tech- 
niques such as simple ray tracing. 

Consider the model of a thin (5 km) crustal 
layer with a root (5 km deep by 20 km wide) 
overlaying a half-space mantle representation. 
(Relevant parameters are given at the bottom 
of Figure 4). This model is not of much intrinsic 
interest, other than perhaps as a crude repre- 
sentation of a volcanic island root. It was chosen 

for computational purposes since the FD method 
is most suitable for calculations of fields within 

several wavelengths of scattering heterogeneities. 
The AL method is preferable to the FD method 
for the more interesting computation of surface 
motions resulting from the propagation of short- 
period body waves through continental crusts 
that have an irregular M discontinuity. 

The general nature of the transient solution 
can be seen in Figure 2. In this figure printer-plot 
contours of displacement computed by the FD 
method are shown in vertical sections at different 

times. The top edge of each plot corresponds to 
the free surface; the discontinuity is represented 
by the solid line. These plots are presented only 
to give a qualitative picture of the displacement 
variation in space and time. The contours clearly 
show how the incident transient plane wave is 
refracted, as expected, into the low-velocity 
upper medium. Scattered waves in the lower 
medium are evident. Figure 3 brings out the 
scattered waves more clearly. Here the contours 
represent the difference between the solution 

in Figure 2 and the solution when no bump is 
present. 

A quantitative comparison of the FD and AL 
solutions is shown in Figure 4 for the period 
T - 2.56 sec. (The incident wavelet had its 
dominant amplitude near this period.) The 
results were obtained in the following way: the 
time series at several sites along the free surface 
were windowed by multiplication of an exponen- 
tial with decay time T,(3.58 sec in this example), 
and then spectral anomalies were formed by 
dividing the time series' spectra by the spectra 
of the similarly windowed solution to the problem 
with no bump. Also shown in Figure 4 is the 
dependence of the FD results on the grid spacing 
DX (-DZ) and on the distances to the artificial 
boundaries NX. DX and NZ. DZ. 

The FD solutions appear to converge toward 
the AL solution as the boundaries are removed 

and as the grid spacing decreases. In the AL tech- 
nique, an a posterJori estimate of the error in 
the surface displacements can be made from 
study of the match in displacement and stress 
at the interface [Aki and Larner, 1970]. For the 
problem discussed here, the estimated error is 
less than 2.5% and the AL solution probably 
more nearly approximates the true solution than 
the FD results do. Still, the agreement between 
the two solutions is quite good, even with the 
coarser grid, and corresponds to an uncertainty 
in the results of less than 5%. The largest error 
occurs near x - 14 km and may be caused by a 
difference in the way the curved and fiat interface 
conditions are treated numerically in the FD 
method. 

SOFT BASIN PROBLEM 

An important problem to engineering seis- 
mologists is understanding the ground motion 
near lateral changes in the layer thickness of 
basins filled with low-rigidity sediments. Because 
of its inherent interest, the soft basin problem 
will be considered in some detail. The two related 

models of the basin that are shown in Figure 5 
will be used in an attempt to isolate some of the 
physical processes involved in the complex wave 
interference patterns observed in our solutions 
for motion at the surface of the basin. 

Soft basin model 1. The relevant parameters 
(shear velocities/• and/•.., and rigidities y, and •z,) 
for this model are shown in Figure 5. The results 
of the calculations can be applied to other models 
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Fig. 2. Contour plots of the total motion in the crust-mantle problem at times (a) 1.5, (b) 2.5, 
(c) 3.5, and (d) 4.5 sec (finite difference solution). See text for explanation. 

by scaling distances and times by the same 
factor. Note that the interface dips less steeply 
than it did in the crust-mantle model, and the 
velocity contrast between the layer and the 
half-space is much larger. Because of this large 
contrast the layer can, to a first approximation, 

be thought of as a plate with a rigid bottom and a 
free upper surface. With this description in mind 
we chose the layer thicknesses and the dominant 
wavelengths in the incident pulse such that 
resonance and anti-resonance conditions will be 
met at various points along the surface of the 
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Fig. 3. Contour plots of the scattered motion that were derived by subtracting the solution 
for the problem of a fiat layer with no bump from the solution shown in Figure 2. 

basin. Thus a complicated ground motion should 
be expected. This motion (computed by the 
FD method) is shown in Figure 6, along With the 
transient motions expected if the incident wavelet 
were to propagate through a fiat layer of thick- 
ness given by the thickness under each recording 

site on the surface. This reduction of a basically 
two- or three-dimensional problem to a series of 
one-dimensional problems is the:common ap- 
proach in engineering seismo•ogy studies. It will 
be termed here the fiat-layer approximation 
(FLA). Altlibugh the FLA give•,' as predicted, 
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Fig. 4. Comparison of Aki-Larner (AL) and finite difference (FD) solutions at a period of 2.56 

sec for the crust-mantle problem depicted at the bottom of the figure. An exponential window of 
decay time 3.58 sec has been used. The time increment used in the FD solution was 0.025 sec. 
The shear wave velocities in the layer and the half-space are/S• and/%, respectively. The rigidities 
are •t, and 

a reverberating signal at sites over the basin, a 
striking discrepancy between the FLA and FD 
solutions appears at later times. Since the FLA 
takes vertical interferences into account, the 
discrepancy is due to the lateral interference 
caused by the nonplanar shape of the basin. 
More discussion of these points will be given 
later. Note, however, the good agreement 
between the FLA and FD solutions in the first 

motions (t • 3 see). This shows that the basin's 
focusing of the first arriving energy is insignif- 
icant. 

The discussion above assumes that the FD 
solution is correct. This remains to be shown. 

As discussed earlier, the first step in assessing 
the accuracy of the FD solution is to multiply 

the time traces by an exponential window to 
eliminate truncation effects and contamination 
from side boundaries. In the traces shown in 

Figure 6 the amount of contamination present 
is slight. This was determined by running the 
problem twice (once with a grid 7.5 km deep by 
6.5 km wide and the other time with a grid 
10.0 km deep by 7.5 km wide) and observing 
the change in the traces. No change was observed 
in the traces up to a range of 0.8 km. The later 
part of the trace at x - 1.2 km showed a slight 
change, and the traces for ranges of 1.6 km and 
beyond showed a significant contamination 
phase present in the results from the 7.5- by 
6.5-km grid. This contamination can be seen 
after 5.5 sec in the time series at x = 5.1 and 
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x -- 5.5 kin, as shown in Figure 12 for model 2. 
(This figure was derived from calculations using 
a grid 7.5 km deep and 10.0 km wide.) 

exponential having a decay time of 1.33 sec are 
shown in Figure 7. The later parts of the record 

.-. 

x:2.4 

REFERENCE 

0 1.0 2.0 5.0 4.0 5.0 6.0 7.0 
TIME (sec) 

Fig. 6. Computed seismograms for various sites 
along the free surface over the irregular interface in 
soft basin model 1. The reference trace is the solu- 

tion to the auxiliary one-dimensional problem of a 
constant-thickness layer over a half-space and 
represents the trace that would be observed far 
from the basin. The dashed lines are the solutions 

derived from the fiat-layer approximation (FLA). 
The FD solutions used a grid with At -- 0.005 sec 
and Ax = Az = O. 10 km. 
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x: 0 km /--... 

0.4 

- iZ • ........ 

x= 2_.• - •, 
REFERENCE• 

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 
TIME (sec) 

Fi•. 7. The results of spplyin• •n exponenfisl 
•indow hsvin• decsy time 1.33 see •o •he •rsce in 
•igure 6. 

have been effectively diminished, but some of the 
interesting reverberation has been retained. 

The next step is to take the Fourier transform 
of each trace and then normalize the resulting 
spectrum by the spectrum of the reference trace 
(the FLA solution at large distance x from the 
basin). This process is shown in Fig•e 8 for the 
trace at x = 0 kin. From the plate approximation 
we expect anti-resonance at frequencies 

f = (n/2)(f•/h) n = 1, 2, ... 

where f• is the shear velocity in the layer and h is 
the layer thickness. The two nulls in the spectrum 
shown in Figure 8 occur near the predicted values 
for n = 1, 2. 

The amplitude and phase-delay anomalies 
resulting from the above steps are compared, 
as a function of station location, with AL solu- 
tions at several periods in Figures 9, 10 and 11. 
The AL solutions were normalized to the Haskell 

fiat-layered solution [Haskell, 1960] appropriate 
to the 0.1-kin-thick layer away from the basin. 
Complex frequency was also used in the Haskell 
solution. (Because of storage limitations, the FD 
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Fig. 8. Amplitude spectra of two time series in 
Figure 7 and the resulting amplitude ratio. The 
nulls in the spectrum at x = 0 km are primarily 
caused by anti-resonance in the layer. 
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Fig. 9. Frequency domain comparison of the 
AL, FD, and FLA solutions for soft basin model 1 
at the period 1.28 sec. 
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results were not accumulated at a large number 
of spatial locations and thus in the figures could 
not be connected by a continuous line, as could 
the AL results.) The agreement between the 
FD and AL solutions is very good throughout the 
range of periods illustrated and also holds for 
other exponential window decay times (not 
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Fig. 11. Frequency-domain comparison of the 
AL, FD, and FLA solutions for soft basin model 1 
at the period 3.41 sec. 
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shown here); this agreement supports the accura- 
cies of the independent methods and confirms 
the interpretation of complex frequency as 
equivalent to windowing in the time domain 
followed by transformation to the frequency 
domain. 

SoIt basin model •. In an attempt to investi- 
gate a monotonic change in layer thickness (as 
opposed to the confined basin discussed above) 
the model shown at the bottom of Figure 5 was 
used. Because of the symmetry about the left- 
hand boundary, however, the model is one of a 
basin, but, as will be seen, the scale between the 
input wave and basin are such that to a first 
approximation the model is the desired one of a 
simple change in the thickness of the layer. In 
fact, the new model is the same as the previous 
one but with a fiat bottom. It was chosen to aid 

in the physical interpretation, discussed below, 
of the divergence between the FLA solution and 
the more exact solutions. 

The computed time series at several points 
along the ground's surface are shown in Figure 12. 
The input wave was the same as in soft basin 
model 1. Also, except for the traces at z = 0, 
2.7, and 3.1 km, the station locations are equiv- 
alent, with respect to the layer thickness beneath 
the station, to those in the previous model. 

The FD and AL solutions are compared in 
Figures 13, 14, and 15 at the same periods and 
with the same exponential window as in model 1. 
As before, the comparison is quite good, with 
agreement to within 5%. This close agreement is 
expected, of course, because the basic problem 
has not changed significantly from that in 
model 1. 

Discussion. With confidence that the time 

domain and frequency domain solutions are 
close approximations to the real solutions, we 
can proceed to discuss the significance and mean- 
ing of the results. Probably the most important 
question concerns how well the results compare 
with those computed from conventional one- 
dimensional models based on a fiat-layer approx- 
imation (FLA) of the two-dimensional structure. 
The FLA was computed for the models and is 
compared with the FD and AL results in the 
appropriate figures. We see that, in the frequency 
domain, the FLA solution departs from the other 
solutions in detail, but that in the large sense 
they agree. The agreement may be artificially 
caused by the window used, however, for, 

0 1.0 2.0 3.0 4.0 5.0 6',0 7.0 
TIM E (sec) 

Fig. 12. Computed seismograms for various 
sites along the free surface over the irregular 
interface in the soft basin model 2. The long-dashed 
line for x -- 0, 2.7, and 3.1 km is the FLA solution. 
The short-dashed lines for x > 3.5 km are the FD 

solutions to the soft basin problem 1. As discussed 
in the text, the phase in the later part of the x -- 5.1 
and 5.5 km traces is a contamination from the 
artificial boundaries. 

although the first motions computed from the 
FLA and FD methods are similar, the later 
motions are significantly different. Applying a 
fairly severe exponential window enhances the 
importance of the earlier arrivals as compared 
with the later arrivals and thus enhances the 

comparison between the results. This is clearly 
shown in Figure 16, where the AL and FLA 
results for a period of 1.71 sec and a range of 
window decay times are shown for mode] 1. As 
the decay time increases, thus enhancing the 
importance of the later reverberations, the 
divergence between the results increases. It is 
interesting to note that the damping out of later 
arrivals by use of the window is similar in effect 
to the propagation of the wave motion through 
a more realistic anelastic material; thus Figure 16 
shows variability analogous to the variability 
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Fig. 13. Frequency-domain comparison of the 
AL, FD, and FLA solutions to soft basin model 2 

the period 1.28 sec. 

that would be produced by a range of Q values. 
The departures of the solutions from the FLA 

are of considerable importance in the prediction 
of ground motion amplitudes in evaluations of 
earthquake hazards. It is widely recognized, in 
practice, that such predictions are complicated 
by the hysteretic stress-strain response of soils. 
The results for the soft basin problems indicate 
that two-dimensional (•nd presumably three- 
dimensional) effects add greatly to the compli- 
cations, especially if the medium allows many 
reverberations. Even if the medium is strongly 
attenuating (as represented by the use of 
T• - 1.33 sec), the disagreement between ob- 
served amplitudes and the amplitudes based on 
the FLA can be important. 

The time domain comparisons with the FLA 
(Figures 6 and 12) also show significant varia- 
tions, some of which were not expected from 
consideration of the spectral amplitude anomalies. 
Prominent among these is the large pulse in the 
time series at the center of the soft basin model 1 

(Figure 6). This pulse is three times larger than 
that predicted from the FLA; yet this discrep- 
ancy does not show up to such a degree in the 
amplitude spectra. This variation may be im- 
portant in earthquake hazard evaluations, for 
the details of the ground motion's time history 
may be more important than the relative magni- 
fication of its various frequency components in 
the determination of structural failure; that is 
to say, the phase spectrum anomaly should also 
be considered. 

The time-domain solutions also aid in the 

interpretation of the results. Several features 
must be explained. In Figure 6 three phases 
seem to be present: the first arrival, the first 
multiple reflection, and a later arrival 
proximate times 2.4, 4.2, and 5.9 sec in the 
x - 0 km trace). The first arrival closely follows 
the FLA solution, but the coincidence for most 
traces ends there. The first reflection in the 

x - 0 km trace agrees in position, but not ampli- 
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o / ,, 
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Fig. 15. Frequency domain comparison of the 
AL, FD, and FLA solutions to soft basin model 2 
at the period 3.41 sec. 

rude, with the FLA. In other traces between 
0.4 and 1.6 km the over-all amplitudes are 
comparable but the time correlation of the traces 
is poor. These observations can be explained 
with reference to the simple ray diagram shown 
in Figure 17. The difference between the points 
of arrival on the surface of the direct and first- 

reflected rays is greatest in the range 0.4 to 
1.6 km, and thus the time difference between 
these arrivals at a given spatial location should 

be poorly predicted from the FLA. At x - 0 km, 
however, the reflection should arrive as predicted 
from the FLA since no horizontal refraction 

takes place. The amplitude of the first reflection 
in this case is evidently increased by a focusing 
effect of the first reflections arriving from the 
sides. • 

As opposed to the first reflection, which appears 
to be propagating to the left (toward x = 0 km), 
the third phase appears to travel in the opposite 
direction. This would imply a source for this 
phase on the left side of the basin. A comparison 
of the time traces at equivalent station locations 
for the two soft basin models (Figure 12) shows 
that removing the left part of the basin, as is 
done to a first approximation in model 2, elim- 
inates the third phase from the time series at 
station locations over the region of decreasing 
layer thickness. On the basis of these observa- 
tions, we identify this laterally propagating 
third phase in model I as a continuation of the 
first multiple reflection from one side of the basin 
to the other side. This conclusion explains the 
source of the third phase propagating to the left 
into the region of constant layer thickness in 
model 2 (stations for x • 3.5 km in Figure 12); 
except for this phase, the time series for the 
uniform thickness region are similar to those 
computed from the FLA. 

A comparison of the amplitude anomalies for 
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Fig. 16. Comparison of AL and FLA solutions to the soft basin model at a period of 1.71 sec 
and with various values for imaginary frequency (as expressed by the decay time To of the equi- 
valent time-domain exponential window). 
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Fig. 17. Geometrical ray paths in soft basin model 
1 for four arbitrarily selected rays. 

models 1 and 2 shows that, except for the stations 
over the deepest part of the basin, the results are 
in substantial agreement. In view of the existence 
of the third phase in model 1 this agreement may 
seem puzzling. The exponential window, however, 
effectively damps the laterally propagating waves 
from the far side of the basin except near the 
center of the basin, so that the windowed spectra 
on one side of the basin do not 'see' the other side. 

CONCLUSION 

We have shown that, for two different types of 
problems involving an elastic layer of variable 
thickness overlying an elastic half-space, the 
Aki-Larner and finite difference methods give 
solutions that agree to within better than 5% 
of one another. Because of the basic differences 

between the methods, this agreement implies 
that the computed solutions are close to the real 
solutions. In making the comparison we have also 
seen the value of using an exponential window 
in the time domain and have verified this process 
as being equivalent to solving the problem in the 
complex frequency domain. On the basis of the 
comparison here we can apply, with some con- 
fidence, the respective methods to other types 
of wave scattering problems. 

The concurrent use of the frequency- and 
time-domain solutions was helpful in studying 
the soft basin problems. The sensitive dependence 
of the amplitude spectrum on period makes 
predictions of ground motions difiqcult; yet the 
details of the time-domain behavior may be at 
least as important as the amplification in deter- 
mining the hazard of seismic energy to man-made 
structures. We have also seen in these problems 
that the usual fiat-layer approximations give 
results that can deviate significantly from the 
actual answers. Thus whenever strong reverbera- 
tions are expected in a nonplanar layered struc- 
ture, the fiat-layer approximation may be 
inadequate. 
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