### See Also

Analytical Methods: Gravity. Engineering Geology: Seismology; Natural and Anthropogenic Geohazards; Site and Ground Investigation; Site Classification. Military Geology. Rock Mechanics. Seismic Surveys. Soil Mechanics.

### **Further Reading**

Environmental and Engineering Geophysical Society. http://www.eegs.org/whatis/

Health and Safety Executive (UK) (2000) Avoiding Danger from Underground Services. Health and Safety Executive, London.

McCann DM, Eddleston M, Fenning PJ, and Reeves GM (eds.) (1997) Modern Geophysics in Engineering

Geology. Engineering Geology Special Publication 12. London: Geological Society.

McDowell PW, Barker RD, and Butcher AP (eds.) (2002) *Geophysics in Engineering Investigations*. Engineering Geology Special Publication 19. London: CIRIA.

Milsom J (2003) *Field Geophysics*, 3rd edn., The Geological Field Guide Series. Chichester: John Wiley & Sons.

Reynolds JM (1997) An Introduction to Applied and Environmental Geophysics. Chichester: John Wiley & Sons

Telford WM, Geldart LP, and Sheriff RE (1990) Applied Geophysics, 2nd edn. Cambridge: Cambridge University

Zeltica. Geophysical Method Descriptons. http://www.geophysics.co.uk/methods.html

# Seismology

**J J Bommer**, Imperial College London, London, UK **D M Boore**, United States Geological Survey, Menlo Park, CA, USA

© 2005, Elsevier Ltd. All Rights Reserved.

#### Introduction

Engineering seismology is an integral part of earthquake engineering, a specialized branch of civil engineering concerned with the protection of the built environment against the potentially destructive effects of earthquakes. The objective of earthquake engineering can be stated as the reduction or mitigation of seismic risk, which is understood as the possibility of losses – human, social or economic – being caused by earthquakes. Seismic risk exists because of the convolution of three factors: seismic hazard, exposure, and vulnerability. Seismic hazard refers to the effects of earthquakes that can cause damage in the built environment, such as the primary effects of ground shaking or ground rupture or secondary effects such as soil liquefaction or landslides. Exposure refers to the population, buildings, installations, and infrastructure encountered at the location where earthquake effects could occur. Vulnerability represents the likelihood of damage being sustained by a structure when it is exposed to a particular earthquake effect.

# Earthquake Hazards and Seismic Risk

Risk can be reduced in two main ways, the first being to avoid exposure where seismic hazard is high. However, human settlement, the construction of industrial facilities, and the routing of lifelines such as roads, bridges, pipelines, telecommunications, and energy distribution systems are often governed by other factors that are of greater importance. Indeed, for lifelines, which may have total lengths of hundreds of kilometres, it will often be impossible to avoid seismic hazards by relocation. Millions of people are living in areas of the world where there is appreciable seismic hazard. The key to mitigating seismic risk therefore lies in control of vulnerability in the built environment, by designing and building structures and facilities with sufficient resistance to withstand the effects of earthquakes; this is the essence of earthquake engineering.

This is not to say, however, that the aim is to construct an earthquake-proof built environment that will suffer no damage in the case of a strong earthquake. The cost of such levels of protection would be extremely high, and, moreover, it might mean protecting the built environment against events that may not occur within the useful life of a particular building. It is generally not possible to justify such investments, especially when there are many competing demands on resources. Objectives of earthquakeresistant design are often stated in terms that relate different performance objectives to different levels of earthquake motion, such as no damage being sustained due to mild levels of shaking that may occur frequently, damage being limited to non-structural elements or to easily repairable levels in structural elements in moderate shaking that occurs occasionally, and collapse being avoided under severe

ground shaking that is only expected to occur rarely. These objectives are adjusted according to the consequences of damage to the structure; for rare occurrences of intense shaking, the performance target for a single-family dwelling will be to avoid collapse of structural elements, so that the occupants may escape from the building without injury. For a hospital or fire station, the performance target will be to remain fully operational under the same level of shaking, because the services provided will be particularly important in the aftermath of an earthquake. For a nuclear power plant or radioactive waste repository, the performance objective will be to maintain structural integrity even under extreme levels of shaking that may be expected to occur very rarely.

Once planners and developers have taken decisions regarding the location of civil engineering projects, or once people have begun to settle in an area, the level of exposure is determined. In general, seismic hazard cannot be altered, hence the key to mitigating seismic risk levels lies in the reduction of vulnerability or, stated another way, depends on the provision of earthquake resistance. In order to provide effective earthquake protection, the civil engineer requires quantitative information on the nature and likelihood of the expected earthquake hazards. As already indicated, this may mean defining the hazard, not in terms of the effects that a single earthquake event may produce at the site, but as a synthesis of the potential effects of many possible earthquake scenarios and quantitative definitions of the particular effects that may be expected to occur with different specified frequencies. This is the essence of engineering seismology: to provide quantitative assessments of earthquake hazards.

Earthquake generation creates a number of effects that are potentially threatening to the built environment (Figure 1). These effects are earthquake hazards, and engineering seismology, in the broadest sense, is concerned with assessing the likelihood and characteristics of each of these hazards and their possible impact in a given region or at a given site of interest. Earthquakes are caused by sudden rupture on geological faults, the slip on the fault rupture ranging from a few to tens of centimetres for moderate earthquakes (magnitudes from 5 to about 6.5) to many metres for large events (see Tectonics: Earthquakes). In those cases where the fault extends to the ground surface (which is often not the case), the relative displacement of the two sides of the fault presents an obvious hazard to any structure crossing the fault trace. In the 17 August 1999 Kocaeli earthquake in Turkey, several hundred houses and at least one industrial facility were severely damaged by the surface deformations associated with the slip on the

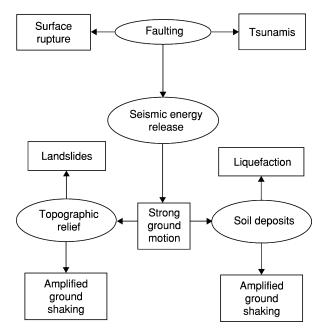



Figure 1 Potentially destructive effects of earthquakes, showing the elements of the earthquake generation process and the natural environment (ovals) and the resulting seismic hazards (rectangles).

North Anatolian fault. However, buildings must be situated within a few metres of the fault trace for surface rupture to be a hazard, whereas ground shaking effects can present a serious hazard even at tens of kilometres from the fault trace; hence, even if the fault rupture is tens or even hundreds of kilometres in length, the relative importance of surface rupture hazard is low. An exception to this is where lifelines, particularly pipelines, cross fault traces, although identification and quantification of the hazard allows the design to take into account the expected slip in the event of an earthquake: in the vicinity of the Denali Fault, the trans-Alaskan oil pipeline is mounted on sleepers that allow lateral movement, which permitted the pipeline to remain functional despite more than 4 m of lateral displacement on the fault in the magnitude 7.9 earthquake of 3 November 2002.

Surface fault ruptures in the ocean floor can give rise to tsunamis, seismic sea waves that are generated by the sudden displacement of the surface of the sea and travel with very high speeds. As the waves approach the shore and the water depth decreases, the amplitude of the waves increases to maintain the momentum, reaching heights of up to 30 m. When the waves impact on low-lying coastal areas, the destruction can be almost total.

All of the other hazards generated by earthquakes are directly related to the shaking of the ground caused by the passage of seismic waves. The rapid movement of building foundations during an earthquake

generates inertial loads that can lead to damage and collapse, which is the cause of the vast majority of fatalities due to earthquakes. For this reason, the main focus of engineering seismology, and also of this article, is the assessment of the hazard of ground shaking. Earthquake ground motion can be amplified by features of the natural environment, increasing the hazard to the built environment. Topographic features such as ridges can cause amplification of the shaking, and soft soil deposits also tend to increase the amplitude of the shaking with respect to rock sites. At the same time, the shaking can induce secondary geotechnical hazards by causing failure of the ground. In mountainous or hilly areas, earthquakes frequently trigger landslides, which can significantly compound the losses: the 6 March 1987 earthquake in Ecuador triggered landslides that interrupted a 40-km segment of the pipeline carrying oil from the production fields in the Amazon basin to the coast, thereby cutting one of the major exports of the country; the earthquake that struck El Salvador on 13 January 2001 killed about 850 people, and nearly all of them were buried by landslides. In areas where saturated sandy soils are encountered, the ground shaking can induce liquefaction (see Engineering Geology: Liquefaction) through the generation of high pore-water pressures, leading to reduced effective stress and a significant loss of shear strength, which in turns leads to the sinking of buildings into the ground and lateral spreading on river banks and along coasts. Extensive damage in the 17 January 1994 Kobe earthquake was caused by liquefaction of reclaimed land, leaving Japan's second port out of operation for 3 years.

The assessment of landslide and liquefaction hazard involves evaluating the susceptibility of slopes and soil deposits, and determining the expected level of earthquake ground motion. The basis for earthquake-resistant design of buildings and bridges also requires quantitative assessment of the ground motion that may be expected at the location of the project during its design life. Seismic hazard assessment in terms of strong ground motion is the activity that defines engineering seismology.

## Measuring Earthquake Ground Motion

The measurement of seismic waves is fundamental to seismology. Earthquake locations and magnitudes are determined from recordings on sensitive instruments (called seismographs) installed throughout the world, detecting imperceptible motions of waves generated by events occurring hundreds or even thousands of kilometres away. Engineering seismology deals with

ground motions sufficiently close to the causative rupture to be strong enough to present a threat to engineering structures. There are cases in which destructive motions have occurred at significant distances from the earthquake source, generally as the result of amplification of the motions by very soft soil deposits, such as in the San Francisco Marina District during the 18 October 1989 Loma Prieta earthquake, and even more spectacularly in Mexico City during the 19 September 1985 Michoacan earthquake, almost 400 km from the earthquake source. In general, however, the realm of interest of engineering seismology is limited to a few tens of kilometres from the earthquake source, perhaps extending to 100 km or a little more for the largest magnitude events.

Seismographs specifically designed for measuring the strong ground motion near the source of an earth-quake are called accelerographs, and the records that they produce are accelerograms. The first accelerographs were installed in California in 1932, almost four decades after the first seismographs, the delay being caused by the challenge of constructing instruments that were simultaneously sensitive enough to produce accurate records of the ground acceleration while being of sufficient robustness to withstand the shaking without damage.

Prior to the development of the first accelerographs, the only way to quantify earthquake shaking was through the use of intensity scales, which provide an index reflecting the strength of ground shaking at a particular location during an earthquake. The index is evaluated on the basis of observations of how people, objects, and buildings respond to the shaking (Table 1). Some intensity scales also include the response of the ground with indicators such as slumping, ground cracking, and landslides, but these phenomena are generally considered to be dependent on too many variables to be reliable indicators of the strength of ground shaking. At the lower intensity degrees, the most important indicators are related to human perception of the shaking, whereas at the higher levels, the assessment is based primarily on the damage sustained by different classes of buildings. A common misconception is that intensity is a measure of damage, whereas it is in fact a measure of the strength of ground motion inferred from building damage, whence a single intensity degree can correspond to severe damage in vulnerable rural dwellings and minor damage in engineered constructions. The most widely used intensity scales, both of which have 12 degrees and which are broadly equivalent, are the Modified Mercalli (MM), used in the Americas, and the 1998 European Macroseismic Scale (EMS-98), which has replaced the Medvedev-Sponheuer-Karnik (MSK) scale.

Table 1 Summary of the 1998 European Macroseismic Scale

| Intensity | Definition             | Effects on people and buildings <sup>a</sup>                                                                                                                                                                                                                                                                       |
|-----------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1         | Not felt               | Not felt; detected only by sensitive instruments                                                                                                                                                                                                                                                                   |
| II        | Scarcely felt          | Felt by very few people, mainly those who are in particularly favourable conditions at rest and indoors                                                                                                                                                                                                            |
| Ш         | Weak                   | Felt by a few people, mostly those at rest                                                                                                                                                                                                                                                                         |
| IV        | Largely observed       | Felt by many people indoors and very few outdoors; a few people are awakened by the shaking                                                                                                                                                                                                                        |
| V         | Strong                 | Felt by most people indoors and a few outdoors; a few people are frightened and many who are sleeping are awakened by the shaking                                                                                                                                                                                  |
|           |                        | Fine cracks in a few of the most vulnerable types of buildings, such as adobe and unreinforced masonry                                                                                                                                                                                                             |
| VI        | Slightly damaging      | Shaking felt by nearly everyone indoors and by many outdoors; a few people lose their balance                                                                                                                                                                                                                      |
|           |                        | Minor cracks in many vulnerable buildings and in a few poor-quality RC structures; a few of the most vulnerable buildings have cracks in walls and spalling of fairly large pieces of plaster                                                                                                                      |
| VII       | Damaging               | Most people are frightened by the shaking, and many have difficulty standing, especially those on upper storeys of buildings                                                                                                                                                                                       |
|           |                        | Many adobe and unreinforced masonry buildings sustain large cracks and damage to roofs and chimneys; some will have serious failures in walls and partial collapse of roofs and floors; minor cracks in RC structures with some earthquake-resistant design, more significant cracks in poor-quality RC structures |
| VIII      | Heavily damaged        | Many find it difficult to stand                                                                                                                                                                                                                                                                                    |
|           |                        | Many vulnerable buildings experience partial collapse and some collapse completely; large and extensive cracks in poor-quality RC buildings and many cracks in RC buildings with some degree of earthquake-resistant design                                                                                        |
| IX        | Destructive            | General panic (this is the highest degree of intensity that can be assessed from human response)                                                                                                                                                                                                                   |
|           |                        | General and extensive damage in vulnerable buildings; cracks in columns, beams, and partition walls of RC buildings, with some of those of poor quality suffering heavy structural damage and partial collapse; non-structural damage in RC structures with high level of earthquake-resistant design              |
| Χ         | Very destructive       | Partial or total collapse in nearly all vulnerable buildings; extensive structural damage in RC and steel structures                                                                                                                                                                                               |
| XI        | Devastating            | Extensive damage and widespread collapse in nearly all building types; very rarely observed, if ever                                                                                                                                                                                                               |
| XII       | Completely devastating | Cataclysmic damage; has never been observed and is probably not physically realizable                                                                                                                                                                                                                              |

<sup>&</sup>lt;sup>a</sup>RC, Reinforced concrete.

A very useful picture of the strength and distribution of ground shaking in an earthquake can be obtained by mapping intensity observations. The modal value is assigned to each given location, such as a village, from all the individual point observations gathered, and then lines called isoseismals are drawn to enclose areas where the intensity reached the same degree (Figure 2). Such isoseismal maps have many applications, one of the most important of which is to establish correlations between earthquake size (magnitude) and the area enclosed by isoseismals. These empirical relations can then be used to estimate the magnitude of historical earthquakes that occurred before the advent of the global seismograph network at the end of nineteenth century, but for which it is possible to compile isoseismal maps from written accounts of the earthquake effects. For engineering design and analysis, however, intensity values are of limited use because they cannot be reliably translated into numerical values related to the acceleration or displacement of the ground. Indeed, intensities are usually expressed in Roman numerals precisely to reinforce the idea that they are broad indices rather than numerical measurements. This is why accelerograms are invaluable to earthquake engineering, providing detailed measurements of the actual movement of the ground during strong earthquake-induced shaking.

Accelerograms generally consist of three mutually perpendicular components of motion, two horizontal and one vertical, registering the ground acceleration against time (Figure 3). The first generation of accelerographs produced analogue records on paper or film, which had to be digitized in order to be able to perform numerical analyses. The analogue recording and the digitization process both introduce noise into the signal; this noise then requires processing of the time-series to improve the signal-to-noise ratio, particularly at long periods. This processing generally involves the application of digital filters. The current models of accelerographs record digitally, thus bypassing the time-consuming and troublesome process of digitization, and producing records with much lower noise contamination. Another advantage of

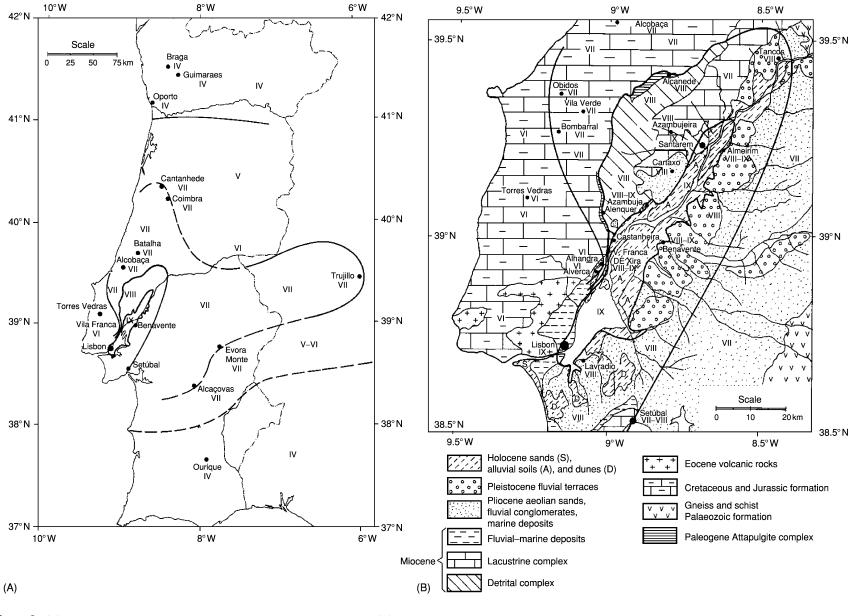
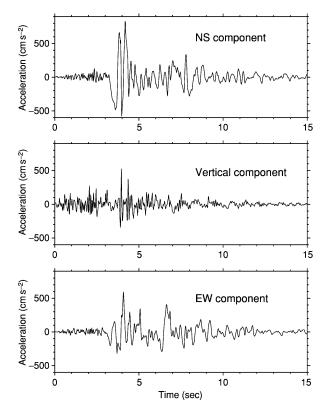
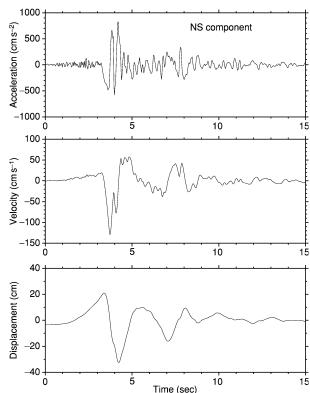



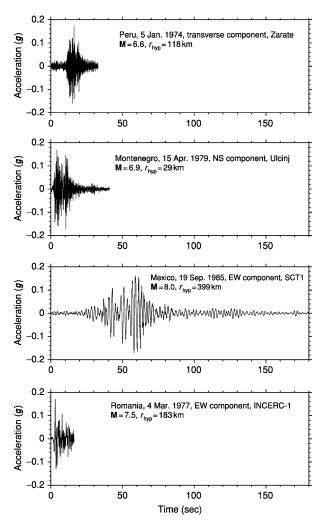

Figure 2 (A) Regional isoseismal map of the Lisbon earthquake of January 1531. (B) Isoseismal map for the epicentral area of the Lisbon earthquake of January 1531, superimposed on a map of the local geology. Reprinted with permission from Justo JL and Salwa C (1998) The 1531 Lisbon earthquake. Bulletin of the Seismological Society of America 88(2): 319–328. © Seismological Society of America.




**Figure 3** Three-component accelerogram (NS, north-south; EW, east-west) digitized from an analogue recording at the Sylmar Hospital free-field site during the Northridge, California, earthquake of January 1994.

digital accelerographs is that they record continuously on reusable media, whereas optical-mechanical instruments remain on standby until triggered by a minimum-threshold acceleration, thus missing the very first-wave arrivals. Although the motions missed by an analogue instrument are generally very small, the advantage with a digital record is that the boundary conditions of initial velocity and displacement are known with greater confidence; the time-series of velocity and displacement are obtained by simple integration of the acceleration time-series, modified as needed by filtering and/or baseline correction to account for long-period noise (Figure 4).

# Characterizing Strong Ground Motion

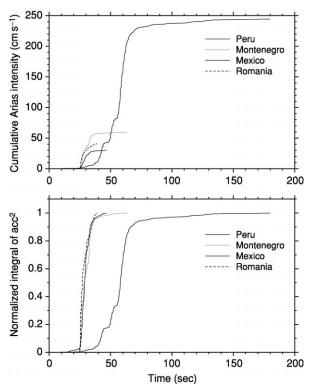

A number of parameters are used to characterize the nature of the earthquake ground motion captured on an accelerogram, although in isolation, no single parameter is able to represent fully all of the important features. The simplest and most widely used parameter is the peak ground acceleration (PGA), which is simply the largest absolute value of acceleration in the



**Figure 4** Filtered acceleration, velocity, and displacement time-series from the north-south (NS) horizontal component of the Sylmar Hospital free-field site record (1994 earthquake, Northridge, California).

time-series; the horizontal PGA is generally treated separately from the peak vertical motion. Similarly the values of the peak ground velocity (PGV) and peak ground displacement (PGD) are also used to characterize the motion, although the latter is difficult to determine reliably from an accelerogram because of the influence of the unknown baseline on the records and the double integration of the long-period noise in the record. These parameters are particularly poor for characterizing the overall nature of the motion because they reflect only the amplitude of a single isolated peak (Figure 5). In engineering seismology, unlike geophysics, accelerations are generally expressed in units of g, the acceleration due to gravity (9.81 m s<sup>-2</sup>).

Another important characteristic of the ground motion is the duration of shaking, particularly of the portion of the accelerogram where the motion is intense. There are many different ways in which the duration of the motion can be measured from an accelerogram, one of the more commonly used definitions being the total interval between the first and last excursions of a specified threshold, such as 0.05 g. Duration of shaking is particularly important in




**Figure 5** Four horizontal accelerogram components with nearly the same peak ground acceleration.  $\mathbf{M}$ , Moment magnitude;  $r_{\mathrm{hyp}}$ , distance from the hypocentre.

the assessment of liquefaction hazard because the build-up of pore water pressures is controlled by the number of cycles of motion as well as by the amplitude of the motion.

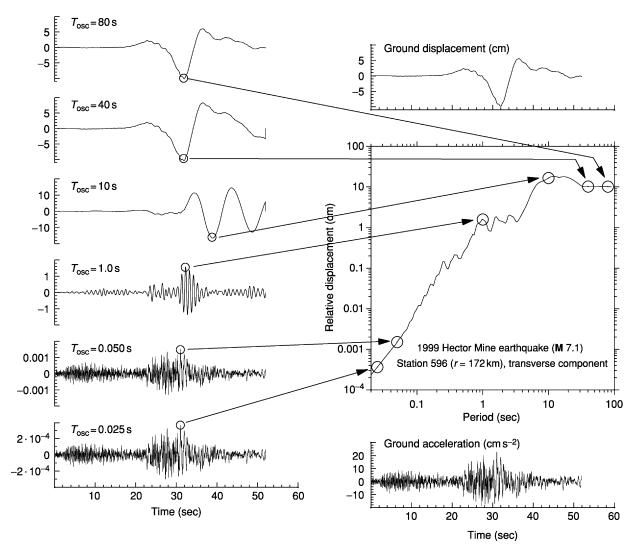
A parameter that measures the energy content of the ground shaking is the Arias intensity, which is the integral over time of the square of the acceleration. A plot of the build-up of Arias intensity with time is known as a Husid plot (Figure 6) and it serves to identify the interval over which the majority of the energy is imparted. The root-mean-square acceleration ( $a_{\rm rms}$ ) is the equivalent constant level of acceleration over any specified interval of the accelerogram; the  $a_{\rm rms}$  is also the square root of the gradient of the Husid plot over the same interval. Arias intensity has been found to be a useful parameter to define thresholds of shaking that trigger landslides.

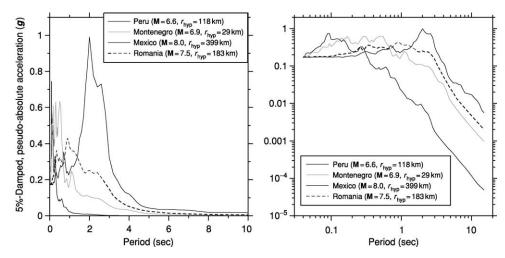
For engineering purposes, the most important representation of earthquake ground motion is the



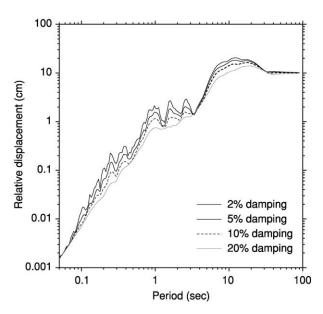
**Figure 6** Husid plots for the four acceleration time-series shown in **Figure 5**, showing the build-up of Arias intensity with time. The upper plot shows the absolute values of Arias intensity; in the lower plot, the curves are normalized to the maximum value attained.

response spectrum, which is a graph of the maximum response experienced by a series of single-degree-offreedom (SDOF) oscillators when subjected to the acceleration time-series at their bases (Figure 7). The dynamic characteristics of a SDOF system, such as an idealized inverted pendulum, are fully described by its natural period of free vibration and its damping, usually modelled as an equivalent viscous damping and expressed as a proportion of the critical damping that returns a displaced SDOF system to rest without vibrations. In earthquake engineering, the default value generally used is 5% of critical damping, the nominal level of damping in a reinforced concrete structure. The response can be measured in terms of the absolute acceleration of the mass of the system, or in terms of its velocity or displacement relative to the base. The most widely used spectrum currently is the acceleration response, because the acceleration at the natural period of the structure can be multiplied by the mass of the building to estimate the lateral force exerted on the structure by the earthquake shaking. The natural period of vibration of a building can be very approximately estimated, in seconds, as the number of storeys





Figure 7 Illustration of the concept of the response spectrum. The trace in the lower right-hand corner is the ground acceleration, and the traces on the left-hand side are the displacement response time-series for simple oscillators with different natural periods of vibration ( $T_{\rm osc}$ ). The maximum displacement of each oscillator is plotted against its natural period to construct the response spectrum of relative displacement. The lowest two traces in the figure illustrate that for short-period oscillators, the response mimics the ground acceleration, whereas for long-period oscillators, the response imitates the ground displacement (shown in the upper right-hand corner). M, Moment magnitude; r, distance to fault rupture.

divided by 10. The acceleration response spectrum intersects the vertical axis at PGA (Figure 8). PGA as a ground-motion parameter has many shortcomings, including a very poor correlation with structural damage, but one of the main reasons that it is persistently used is the fact that it essentially defines the anchor point for the acceleration response spectrum. The relationship between the natural period of vibration of the building and the frequency content of the ground motion is a critical factor in determining the impact of earthquake shaking on buildings.


In recent years, there has been a gradual tendency to move away from the use of acceleration response spectra in force-based seismic design towards displacement-based approaches, because structural damage is much more closely related to displacements than to the forces that are imposed on buildings very briefly during ground shaking. Techniques for assessing the seismic capacity of existing buildings have already adopted displacement-based approaches, giving rise to greater interest in displacement response spectra (Figure 9).

# Prediction of Earthquake Ground Motion

Recordings of ground motions in previous earthquakes are used to derive empirical equations that may be used to estimate values of particular ground-motion parameters for future earthquake



**Figure 8** Acceleration response spectra (5% damped) of the four accelerograms shown in **Figure 5**; the plots are identical except that the one on the left uses linear axes and the one on the right uses logarithmic axes. Each type of presentation is useful for viewing particular aspects of the motion, depending on whether the interest is primarily at short or long periods of response. **M**, Moment magnitude;  $r_{\text{hyp}}$ , distance from the hypocentre.



**Figure 9** Displacement response spectra of a single accelerogram from the 1999 California Hector Mine earthquake (moment magnitude 7.1; station 596;  $r = 172 \, \text{km}$ , r is the distance from the fault rupture in km, transverse component), plotted for different levels of damping. The spectra all converge to the value of peak ground displacement at very long periods.

scenarios. Such empirical equations have been derived for a variety of parameters, but the most abundant are those for predicting PGA and ordinates of response spectra. The equations are often referred to as attenuation relationships, but this is a misnomer because the equations describe both the attenuation (decay) of the amplitudes with distance from the earthquake source and the scaling (increase) of the amplitudes with earthquake magnitude. These two

parameters, earthquake magnitude and source-to-site distance, are always included in ground-motion prediction equations (Figure 10). The equations are simple models for a very complex phenomenon and as such there is generally a large amount of scatter about the fitted curve (Figure 11). The residuals of the logarithmic values of the observed data points are generally found to follow a normal or Gaussian distribution about the mean, and hence the scatter can be measured by the standard deviation. Predictions of PGA at the 84-percentile level (i.e., one standard deviation above the mean value) will generally be as much as 80% higher than the median predictions (Figure 12).

The nature of the surface geology can also exert a pronounced effect on the recorded ground motion. The presence of soft soil deposits of more than a few metres thickness will tend to amplify the ground motion as the waves propagate from the stiffer materials below to the surface (Figures 2B and 13). To account for this effect, site classification is generally included as a third explanatory variable in prediction equations for response spectrum ordinates, allowing spectra to be predicted for different sites (Figure 14). The modelling of site amplification effects in ground-motion prediction equations is generally crude, using simple site classification schemes based on the average shear-wave velocity of the upper 30 m at the site and assuming that the degree of amplification is independent of the amplitude of the input motion, whereas it is generally observed that weak motion is amplified more than strong motion; this non-linear response of soils is reflected only in a few predictive equations. For this

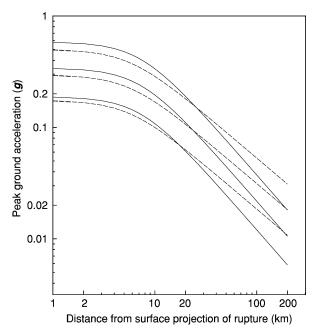
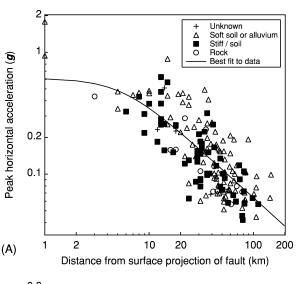
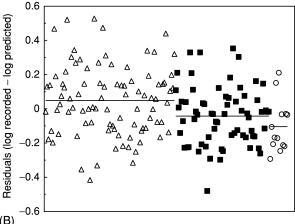
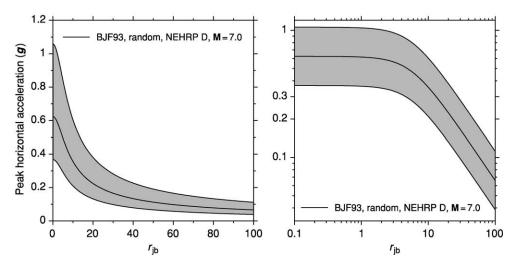



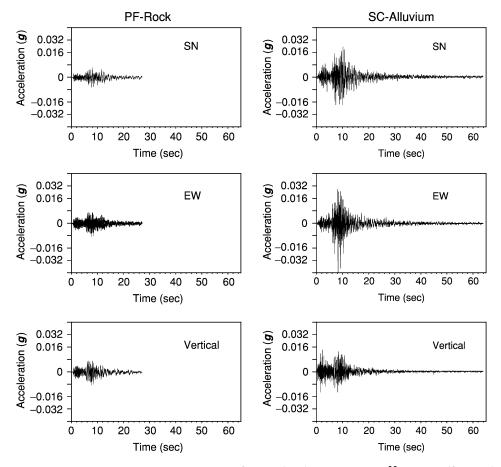

Figure 10 Predicted median values of peak ground acceleration as a function of distance for earthquakes of moment magnitude 5.5, 6.5, and 7.5, using equations derived from western North American (solid lines) and European (dashed lines) data sets. The European equation is based on surface-wave magnitude, so an appropriate empirical conversion to moment magnitude has been used. The equations are based on different definitions of the horizontal component, the European equation using the larger of the two horizontal accelerations, the North American equation using their geometric mean; the former definition, on average, yields values about 1.17 times larger than the latter. Different criteria were used in the two studies for selecting records, especially at greater distances, for regression. In light of these various observations, it is not possible to draw conclusions about differences or similarities in strong ground motions between the two regions. The North American equation is from Boore DM, Joyner WB, and Fumal TE (1997) Seismological Research Letters 68(1): 128-153; the European equation is from Tromans IJ and Bommer JJ (2002) Proceedings of the 12th European Conference on Earthquake Engineering, Paper no. 394, London.

reason, for site-specific predictions, it is often preferred to predict the bedrock motions first and then model the dynamic response of the site separately (Figure 15).

The nature of ground shaking at a particular site during an earthquake is influenced by many factors, including the distribution and velocity of the slip on the fault rupture, the depth at which the fault rupture is located, the orientation of the fault rupture with respect to the travel path to the site, and the geological structure along the travel path and for several kilometres below the site. A situation that produces particularly destructive motions is the propagation of the fault rupture towards the site, which produces large-amplitude, high-energy pulses of velocity (Figure 16). The variable most often included in predictive equations after magnitude, distance, and





Figure 11 (A) Values of peak horizontal ground acceleration recorded in the 1994 Northridge earthquake in California, plotted as a function of distance from the earthquake source, with an indication of the surface geology at the recording site. The solid line is the result of a regression on the data using a typical model employed in ground-motion prediction equations. (B) Residuals group by site class; the horizontal lines show the mean of the residuals in each class, indicating that there is a tendency for stronger motions on softer ground. However, the differences between the mean lines are small compared with the overall dispersion, thus inclusion of site classification in the predictive equation would result in only a modest reduction of the aleatory variability.

site classification is the style of faulting; equations that include the rupture mechanism as an explanatory variable all predict higher amplitudes of motion from reverse-faulting earthquakes than from strikeslip events. The addition of this fourth explanatory variable, however, has an almost negligible impact on the scatter in the equations, with no appreciable reduction of the standard deviation.

Dense networks of accelerographs now exist in many countries around the world, but for many decades these were limited to a few regions such as California, Japan, Italy, Greece, and Yugoslavia. In



**Figure 12** Predicted values of horizontal peak ground acceleration on soft soil (National Earthquake Hazards Reduction Program (NEHRP) class D) sites for an earthquake of magnitude 7 as a function of distance from the surface projection of the fault rupture  $(r_{jb})$ . The predictions are made using an equation derived from earthquakes recorded in western North America, by DM Boore, WB Joyner, and TE Fumal. The thick black line of Boore, Joyner, and Fumal (BJF93) shows the median predicted values and the grey bands indicate the range of the median multiplied and divided by  $10^{\sigma}$ , where  $\sigma$  is the standard deviation of the logarithmic residual; on average, 68% of observations would be expected to fall within the grey area.



**Figure 13** Accelerograms recorded on two instruments in the Gemona (Italy) array during the **M** 5.6 Bovak (Slovenia) earthquake of 12 April 1998 (**M** = moment magnitude). Both instruments are 38 km from the earthquake epicentre, and are separated by about 700 m. The Piazza del Ferro station (PF) is on rock with a shear-wave velocity reported as 2500 m s<sup>-1</sup>, whereas the Scugelars station (SC) is on alluvium with a shear-wave velocity of 500 m s<sup>-1</sup>. Because the distance and azimuth of the two stations with respect to the earthquake source are almost identical, the difference between the amplitude of the two recordings is primarily due to the different surface geology at the two recording locations (SN, south–north; EW, east–west).

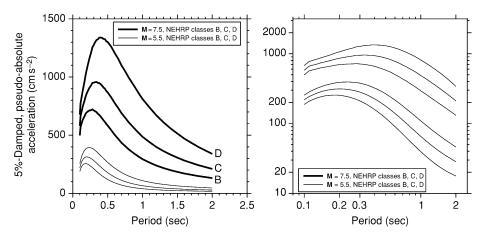



Figure 14 Predicted median ordinates of spectral acceleration (5% damped) for earthquakes of magnitudes 5.5 and 7.5, recorded at 10 km on sites classified as B, C, and D in the National Earthquake Hazards Reduction Program (NEHRP) scheme, corresponding to soft rock, stiff soil, and soft soil, respectively. The two graphs are identical except for the left-hand plot being on linear axes and the right-hand plot being on logarithmic axes.

other regions, the number of available accelerograms is further reduced by the relatively low frequency of felt earthquakes. Seismic hazard assessment in such regions is hampered by the absence of indigenous recordings, and a solution that is often employed is to use stochastic simulations to generate motions based on representing the ground shaking as random motion with frequency content and duration that are controlled by theoretical and empirical descriptions of seismic radiation and propagation (Figure 17).

Complete acceleration time-histories can also be generated using more sophisticated seismological models that represent the source as a finite fault rupture. These simulations usually take the form of a kinematic model of the fault rupture, with rupture velocities and slip amplitudes specified across the fault plane (although these can be specified using statistical distribution in order to be able to generate a suite of motions for a given rupture). Dynamic fault modelling, in which the stress conditions are specified and subsequent rupture is controlled by friction laws on the fault surface as well as the heterogeneous threedimensional stress distribution, is less commonly used for the simulation of ground motions for engineering purposes because the necessary physical quantities are not known with sufficient precision and because the computational effort is much greater than with the kinematic models (which can be quite demanding if lateral variations in geology are taken into account). In the future, as computers become more powerful and the details of the geologic structure and velocity distributions are better determined, it is likely that the kinematic models will continue to be used, but the simulations will better represent the effects of wave propagation.

### Seismic Hazard Assessment

Engineering seismology is often described as the link between Earth sciences and engineering, and this is most evident in seismic hazard assessment, the aim of which is to estimate the earthquake ground motions that can be expected at a particular location. Seismic hazard assessments may be performed for a number of reasons, the most common being to determine seismic loads to be considered in earthquake-resistant design of buildings. Another common application is the evaluation of the ground motions required as input to the assessment of landslide or liquefaction hazard. A rapidly expanding market for seismic hazard assessments is being created by the demand for earthquake loss models by local governments, emergency services, seismic code developers, and particularly the insurance and reinsurance industries.

There are many different ways to approach seismic hazard assessment, but all methods and approaches include two essential elements: a model for earthquake occurrence and a model for predicting ground motions from each earthquake. The starting point for building a model for earthquake occurrence, known as a seismicity model, is to first identify the locations where earthquakes will be expected to occur in the future. Data used to define seismic source zones include previous earthquake activity, the existence of geological faults, and crustal deformations. Ideally, all seismic sources should be identified as active geological faults, but this is very often not possible, hence zones are defined as areas within which future earthquakes are expected to occur (Figure 18). Some recent approaches to seismic hazard assessment dispense with source zones altogether, basing the sources of

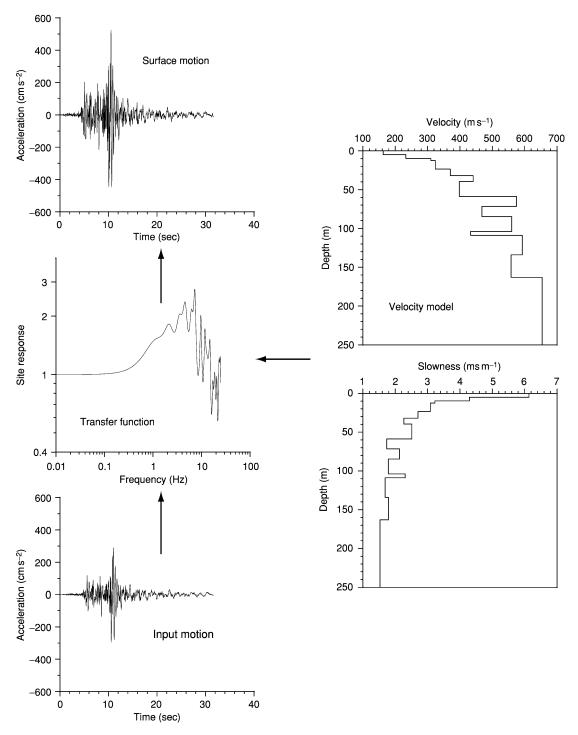



Figure 15 Illustration of site response analysis: The input motion in the underlying rock (bottom left) passes through a model of soil profile to produce the surface motions (top left). The soil characteristics are represented either by the shear-wave velocity or the shear-wave slowness (right); the slowness is simply the reciprocal of the shear-wave velocity, but there are many reasons for using it in place of the velocity. The theoretical response of layered systems involves travel times across the layers, which are directly proportional to the slowness; the proportionality to velocity is inverse. Furthermore, to obtain a representative profile for a soil class using several boreholes, individual measures of slowness can be directly averaged, whereas it is not correct to do this for velocities. Finally, the largest influence on the surface motion is due to the differences in velocities near the surface, and these differences become more clearly apparent when the slowness profile is shown; larger velocity differences in the stiffer layers at greater depths, which can dominate a velocity profile, are less important.

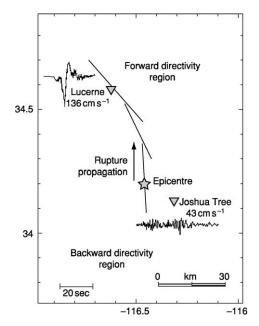



Figure 16 Velocity time-series obtained from integration of horizontal accelerograms recorded at Lucerne and Joshua Tree stations during the 1992 Landers earthquake in California. The fault rupture propagated towards Lucerne and away from Joshua Tree, creating forward directivity effects (short-duration shaking consisting of a concentrated high-energy pulse of motion) at the former, and backward directivity effects (long-duration shaking of several small pulses of motion) at the latter. Reprinted with permission from: Somerville PG, Smith NF, Graves RW, and Abrahamson NA (1997) Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity. Seismological Research Letters 68(1): 199-222. © Seismological Society of America.

postulated future events on past activity. The catalogue of instrumentally recorded earthquakes extends back at the very most to 1898, which is a very short period of observation for events for which recurrence intervals can extend to hundreds or even thousands of years. For this reason, great value is to be obtained from extending the catalogue through the careful interpretation of historical records, making use of empirical relationships between magnitude and intensity referred to previously. The seismic record can also be extended through palaeoseismology, by quantifying and dating coseismic displacements on geological faults.

Although the distinction masks many equally marked differences among the various methods that fall within each camp, a basic division exists between deterministic and probabilistic approaches to seismic hazard assessment. In the deterministic approach, only a few earthquake scenarios are considered, and sometimes just one is selected to represent an approximation to the worst case. The controlling earthquake will generally correspond to an event with the nominal maximum credible magnitude, located at the

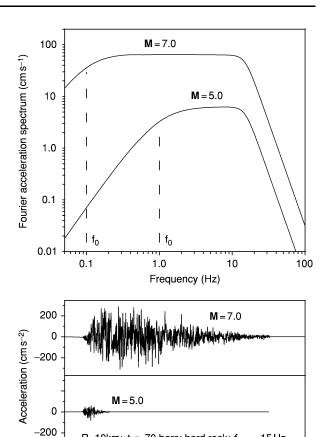



Figure 17 Theoretical Fourier spectra for earthquakes of magnitudes 5 and 7 at 10 km from a rock site, assuming a stress parameter of 70 bars;  $f_0$  is the corner frequency, which is inversely proportional to the duration of rupture. The lower part of the figure shows stochastic acceleration time-series generated from these spectra, from which the influence of magnitude on amplitude and duration (or number of cycles) can be clearly observed. From the spectra in the upper part of the figure, it can be appreciated that scaling with magnitude is frequency-dependent, with larger magnitude events generating proportionally more long-period radiation.

R=10km;  $\Delta \sigma$ =70 bars; hard rock;  $f_{\text{max}}$ 

30

Time (sec)

35

45

40

25

20

location closest to the site within the seismogenic source; the ground motion is generally calculated as the 50- or 84-percentile value from the prediction equation. In the probabilistic approach, all possible earthquake scenarios are considered, including events of every magnitude, from the minimum considered to be of engineering significance ( $\sim$ 4) up to the maximum credible, occurring at every possible location within the source zones, and for each magnitude-distance combination various percentiles of the motion are considered to reflect the scatter in the ground-motion prediction equations. Alternative options for the input parameters may be considered by using a logic-tree formulation, in which weights are assigned to different options that reflect the

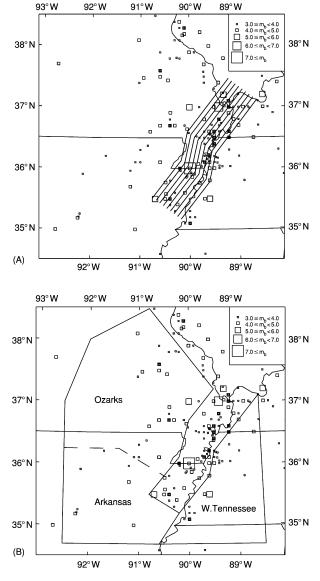
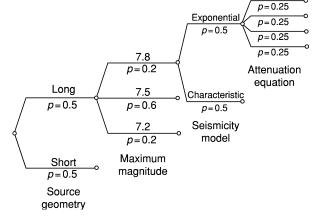




Figure 18 Seismic sources used for probabilistic hazard study of the Mississippi embayment. Small squares show the epicentres of earthquakes with the size corresponding to the body-wave magnitude M<sub>b</sub>. (A) The New Madrid seismic source zone represented as a number of parallel hypothetical faults; (B) the area sources used to represent seismicity not associated with the New Madrid zone. Reprinted with permission from Toro GR, Silva WJ, McGuire RK, and Herrmann RB (1992) Probabilistic seismic hazard assessment of the Mississippi Embayment. Seismological Research Letters 63(3): 449–475. © Seismological Society of America.

relative confidence in their being the best representation (Figure 19). The output is a ranking of these earthquake scenarios in terms of the ground-motion amplitudes that they generate at the site and their frequency of occurrence (Figure 20).

Seismic hazard assessment can be carried out for an individual site, the output including a response spectrum calculated ordinate by ordinate, or even a



**Figure 19** Logic-tree formulation for probabilistic seismic hazard study of the Mississippi embayment. For different input parameters, different options are considered at each node, which are then assigned weights (p) to reflect the relative confidence in each option; the values of p at each node always sum to unity. The source geometry options are the faults shown in **Figure 18**, and an alternative model in which the faults are longer. Reprinted with permission from Toro GR, Silva WJ, McGuire RK, and Herrmann RB (1992) Probabilistic seismic hazard assessment of the Mississippi Embayment. Seismological Research Letters 63(3): 449–475. © Seismological Society of America.

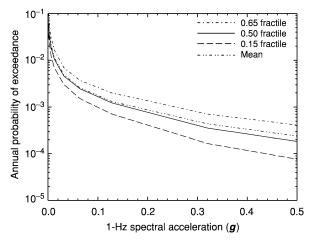



Figure 20 Seismic summary hazard curves for spectral acceleration at 1-s response period for Memphis (including site response), obtained using the logic-tree formulation in Figure 19. Reprinted with permission from Toro GR, Silva WJ, McGuire RK, and Herrmann RB (1992) Probabilistic seismic hazard assessment of the Mississippi Embayment. Seismological Research Letters 63(3): 449-475. © Seismological Society of America.

suite of accelerograms. Hazard assessment is often performed for regions or countries, deriving hazard curves for a large number of locations and then drawing contours of a ground-motion parameter (most often PGA) for a given annual frequency of occurrence, which is often expressed in terms of its inverse, known as a return period (Figure 21). Such hazard maps in terms of PGA are the basis of

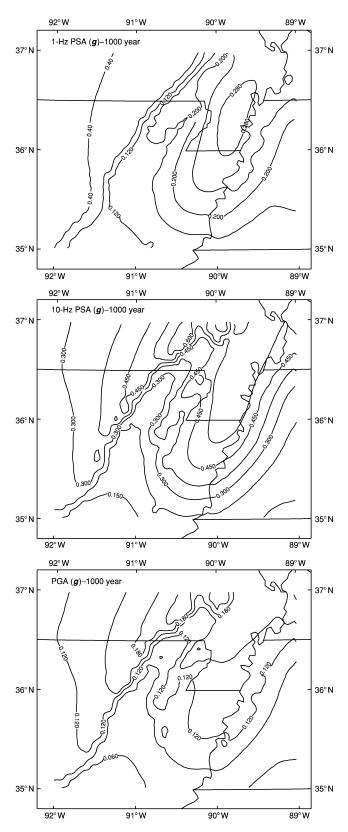



Figure 21 Contours of spectral accelerations in the Mississippi embayment with a 1000-year return period, for different response frequencies corresponding to the response periods of 1.0s (top) and 0.1s (middle) and to PGA (botom). The maps show the spectral accelerations read from the mean hazard curve. Reprinted with permission from Toro GR, Silva WJ, McGuire RK, and Herrmann RB (1992) Probabilistic seismic hazard assessment of the Mississippi Embayment. Seismological Research Letters 63(3): 449-475. © Seismological Society of America.

zonation maps included in seismic design codes, from which design response spectra are constructed by anchoring a spectral shape selected for the appropriate site class to the PGA value read from the zonation map.

### **See Also**

Engineering Geology: Aspects of Earthquakes; Natural and Anthropogenic Geohazards; Liquefaction. Sedimentary Processes: Particle-Driven Subaqueous Gravity Processes. Tectonics: Earthquakes; Faults; Neotectonics.

### **Further Reading**

Abrahamson NA (2000) State of the Practice of Seismic Hazard Evaluation. GeoEng 2000, 19-24 November, Melbourne, Australia.

Ambraseys NN (1988) Engineering seismology. Earthquake Engineering & Structural Dynamics 17: 1–105.

Beskos DE and Anagnostopoulos SA (1997) Computer Analysis and Design of Earthquake Resistant Structures: A Handbook, chs 3-5. Southampton: Computational Mechanics Publications.

Bommer JJ (2003) Uncertainty about the uncertainty in seismic hazard analysis. Engineering Geology 70: 165–168.

Boore DM (1977) The motion of the ground in earthquakes. Scientific American 237: 68-78.

Boore DM (2003) Simulation of ground motion using the stochastic method. Pure and Applied Geophysics 160: 635-676.

Chen W-F and Scawthorn C (2003) Earthquake Engineering Handbook, chs 1–10. Boca Raton, FL: CRC Press.

Douglas J (2003) Earthquake ground motion estimation using strong-motion records: a review of equations for the estimation of peak ground acceleration and response spectral ordinates. Earth Science Reviews 61: 43–104.

Dowrick D (2003) Earthquake Risk Reduction. Chichester, England: John Wiley.

Giardini D (1999) The global seismic hazard assessment program (GSHAP) 1992–1999: summary volume. Annali di Geofisica 42(6): 957-1230.

Giardini D and Basham P (1993) Technical planning volume of the ILP's global seismic hazard assessment program for the UN/IDNDR. Annali di Geofisica 36(3/4): 3-257.

Hudson DL (1979) Reading and Interpreting Strong Motion Accelerograms. EERI Monograph, Earthquake Engineering Research Institute, Oakland, California.

Jackson JA (2001) Living with earthquakes: know your faults. Journal of Earthquake Engineering 5(special issue 1): 5-123.

Kramer SL (1996) Geotechnical Earthquake Engineering. Upper Saddle River, NJ: Prentice-Hall.

Lee WHK, Kanamori H, Jennings PC, and Kisslinger C (2003) International Handbook of Earthquake and Engineering Seismology, Part B. chs. 57–64. Amsterdam: Academic Press.

McGuire RK (2004) Seismic Hazard and Risk Analysis. EERI Monograph MNO-10. Earthquake Engineering Research Institute, Oakland, California.

Naeim F (2001) The Seismic Design Handbook, 2nd edn. chs. 1-3. Boston: Kluwer Academic Publ.

Reiter L (1990) Earthquake Hazard Analysis: Issues and Insights. New York: Columbia University Press.

# **Natural and Anthropogenic Geohazards**

G J H McCall, Cirencester, Gloucester, UK

© 2005, Elsevier Ltd. All Rights Reserved.

#### Introduction

The topic of geohazards became popular with scientists and the media in the early 1990s at the time of the International Decade for Natural Disaster Reduction aimed, by the United Nations, specifically at developing nations in the Third World. It became popular with the media in the belief that we were moving into an age of disaster. In particular, the appreciation of the reality of global climate change and humankind's contribution in the Industrial Age to global warming has led to an awareness of the vulnerability of the world in which we live. Geohazards operate at local scales, e.g., in villages and towns, at a regional

scale, and at the largest scale of all, global. Urban geohazards represent a specialized and increasingly important type of hazard.

An increasing incidence and scale of risk and disaster have recently occurred due to a number of

- increased population concentrations;
- increased technological development;
- over-intensive agriculture and increased industrialization:
- excessive use of the internal combustion engine and other noxious fume emitters, and wasteful transport systems;
- poor technological practices in construction, water management, and waste disposal;
- excessive emphasis on commercial development;
- increased scientific tinkering with Nature without due concern for long-term effects.