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Abstract We develop an empirical model of the decay of Fourier amplitudes for
earthquakes ofM 3–6 recorded on rock sites in eastern North America and discuss its
implications for source parameters. Attenuation at distances from 10 to 500 km may
be adequately described using a bilinear model with a geometric spreading of 1=R1:3

to a transition distance of 50 km, with a geometric spreading of 1=R0:5 at greater
distances. For low frequencies and distances less than 50 km, the effective geometric
spreading given by the model is perturbed using a frequency- and hypocentral depth-
dependent factor defined in such a way as to increase amplitudes at lower frequencies
near the epicenter but leave the 1 km source amplitudes unchanged. The associated
anelastic attenuation is determined for each event, with an average value being given
by a regional quality factor of Q � 525f0:45. This model provides a match, on aver-
age, between the known seismic moment of events and the inferred low-frequency
spectral amplitudes at R � 1 km (obtained by correcting for the attenuation model).
The inferred Brune stress parameters from the high-frequency source terms are about
600 bars (60 MPa), on average, for events of M >4:5.

Introduction

A critical task for the development of ground-motion
prediction equations (GMPEs), as used in seismic-hazard as-
sessment applications, is the study of ground-motion attenu-
ation, including the model for geometric and anelastic
attenuation and its uncertainty. Of particular importance is
the rate of attenuation at close distances (<50 km) and the
manner in which amplitudes at close distances transition to
the levels observed at regional distances (>100 km), where
data are most plentiful.

This study is focused on defining a simple empirical
attenuation model to describe the decay of Fourier spectral
amplitudes in eastern North America (ENA) and its uncer-
tainty. We pay particular attention to the issue of connecting
data at close distances to regional data in a way that accom-
modates the physical constraint provided by seismic mo-
ment, while optimizing the fit to the ground-motion data
amplitudes over a wide range of distances, at all frequencies.
The model accommodates variability in the apparent rates of
attenuation from one event to another that may arise due to
the different crustal structures that are being sampled. The
model focuses on the northeast area of ENA, as seismo-
graphic stations in this region are predominantly on rock
sites, simplifying the problem by allowing attenuation to be
examined without the added complications of site response
on soil sites.

The study is motivated by the observations of Atkinson
(2012), who showed that none of the existing attenuation

models, including recent models by Boatwright and Seekins
(2011) and previous models by Atkinson (2004) and Atkin-
son and Boore (1995), do an adequate job of matching the
observed amplitude decay for the current (2012) ENA dataset
as a whole (though the models may work well for individual
events at some frequencies or over some distance ranges).
We aim to improve on the modeling of attenuation by taking
a fresh look at the overall problem of tying plentiful regional
data to sparse near-distance data in a way that makes optimal
use of what few constraints we have available. We begin with
the regional distance range (>150 km), where attenuation
can be most confidently defined, using distant data to deter-
mine regional quality factor (Q); we find the best-fitting Q
for each event at each frequency, thus ensuring a good match
to the amplitude constraints on ground motion provided by
the regional data. Based on previous studies and preliminary
trials with alternative forms (including linear, bilinear, and
trilinear forms, with hinge points at various distances), we
choose a bilinear form of the attenuation model with the tran-
sition distance set at 50 km for the attenuation shape. We
then find the slope (b) of the near-distance attenuation (as-
suming amplitudes decay from the source to 50 km as R−b)
that results in a match between the low-frequency spectral
amplitude at R � 1 km and the value required by the known
seismic moment of the event. We examine the residuals for
this model to define apparent frequency-dependent trends
that are revealed at closer distances; we use these trends
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to define a function that mimics frequency dependence in the
effective geometric spreading at close distances, while leav-
ing the 1 km source amplitudes unchanged. For each event,
we correct the observations for the attenuation model to ex-
amine effective source spectra and their average shape for
events of different magnitudes.

This study is part of a larger collaborative effort in the
context of the Next Generation Attenuation-East Project
(NGA-East Project), in which we are building new GMPEs
by considering new information on source, path, and site
constraints. This study outlines our work on the path com-
ponent of this project and also touches on the implications of
the attenuation model for the description of the earthquake
source. It should be emphasized that this is strictly an em-
pirical study. Numerical modeling studies that provide
context for the attenuation trends we expect to observe are
provided by Burger et al. (1987), Ou and Herrmann (1990),
and Chapman (2012).

Database for Study

The database for this study is the Fourier amplitude data-
base for events in ENA as compiled and processed by Assa-
tourians and Atkinson (2010; see Data and Resources),
updated through 2011. Figure 1 shows a map of the events
and stations, whereas Figure 2 shows the database distribu-
tion in magnitude and distance. For this study, we use records
from events of moment magnitude (M) equal to or greater
than 3.5, recorded on rock sites (VS30 > 1000 m=s, with

most sites having VS30 > 1800 m=s), at distances up to
600 km. The horizontal component is the geometric mean
of the two components. Fourier amplitudes were computed
as described by Assatourians and Atkinson (2010) and
smoothed in bins 0:1 log10 units in width. The moment mag-
nitudes were taken from regional moment tensor inversions
where available (such as those provided on B. Herrmann’s
website; see Data and Resources section); andM values were

Figure 1. Locations of study events and recording stations. The color version of this figure is available only in the electronic edition.

Figure 2. Distribution of available data in magnitude–distance
space; data beyond 600 km were not used in this study. The color
version of this figure is available only in the electronic edition.
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estimated for the remainder of the events using a robust tech-
nique based on regional amplitude data, calibrated to events
with known moment as described by Atkinson and Babaie
Mahani (2013). The advantages of this technique are that
the moment is based only on regional observations and is
independent of the geometric spreading function or event-
specific attenuation details.

Attenuation Behavior of ENA Fourier
Amplitude Data

An empirical model for the Fourier acceleration spec-
trum as a function of magnitude and distance is the key
component of stochastic models used to develop GMPEs.
Typically, the acceleration spectrum is modeled by a spec-
trum with an ω2 shape, in which ω is the angular frequency
(Brune, 1970, 1971; Boore, 1983, 2003). Theω2 model spec-
trum is derived for an instantaneous shear dislocation at a
point. The acceleration spectrum of the shear wave, Y�f�,
at an effective distance R from an earthquake is given by

Y�f� � CM0G�R�f�2πf�2=�1� �f=f0�2�gA�f�
× exp�−πfκ0� exp�−πfR=Qβ�; �1�

in which M0 is seismic moment and f0 is corner frequency.
The latter is given by f0 � 4:906 × 106β�Δσ=M0�1=3, in
which Δσ is the stress parameter in bars (where
10 bars � 1 MPa),M0 is in dyn·cm, and β is the shear-wave
velocity near the source, in km=s (assumed to be 3.7 in this
article) (Boore, 1983). The constant C is generally taken as
C � RθϕFV=�4πρβ3�, in which Rθϕ is the radiation pattern
(average value of 0.55 for shear waves), F free-surface ampli-
fication (2.0), V the partition onto two horizontal components
(0.71), and ρ density (2.8) (Boore, 1983, 2003). The model in
equation (1) is based on a point-source representation of the
ground motion; however, as shown by several authors (e.g.,
Atkinson and Silva, 2000; Boore, 2009; Yenier and Atkinson,
2012; E. Yenier and G. M. Atkinson, unpublished manuscript,
2014), the model works well for predicting motions from
sources of finite extent if the distance R is modified to account
for geometric effects of a finite source. That is why we refer to
R as an effective distance rather than a hypocentral distance.
For small earthquakes R would be very nearly equal to the
hypocentral distance, but for large earthquakes it would be
larger than the hypocentral distance, resulting in a near-dis-
tance ground-motion saturation effect. In addition, when using
the equation above to extrapolate observed motions back to
the source, we set R � 1 km, even though this would not gen-
erally be realizable if R was truly the hypocentral distance. In
other words, R � 1 km represents a virtual point-source loca-
tion, not an actual point in physical space. Note that the speci-
fied values of physical constants are not particularly
important, except that they act together to provide a scaling
factor that connects observations to source and attenuation
parameters. Thus, the same constants should be maintained

when applying the model in a forward sense. A�f� is the am-
plification from the source to the surface. For the very hard
rock site conditions of interest to us in this article, this is a
maximum of 1.4 for the horizontal component at high
frequencies; it is assumed to be near unity for the vertical com-
ponent (Atkinson and Boore, 2006). The kappa term,
exp�−πfκ0�, is a high-cut filter to account for near-surface
attenuation effects, which describe the commonly observed
rapid spectral decay at high frequencies (Anderson and
Hough, 1984).

G�R� in equation (1) is the geometrical spreading func-
tion; it equals 1=R for a uniform whole space, but it can be a
complex function of R. At close distances, the geometric
spreading is controlled by the decay of direct-wave ampli-
tudes in a layered crust, whereas at larger distances there
are contributions from reflections and refractions from the
Moho and a transition to surface-wave spreading (e.g., Bur-
ger et al., 1987). For example, in Atkinson (2004), G�R� is
represented by a tripartite behavior that includes an increase
in amplitude for distances between 70 and 140 km, due to
postcritical angle reflections, followed by a transition to sur-
face-wave spreading rates. It is generally agreed that geomet-
ric spreading may be modeled as 1=R0:5 in ENA at regional
distances (>100 km; i.e., the surface-wave spreading rate),
but that attenuation due to geometric spreading decays more
rapidly at close distances (1=Rn, with n ≥ 1; e.g., Atkinson,
2012). The quality factor, Q�f�, is an inverse measure of ef-
fective anelastic attenuation, which introduces an additional
decay in spectral amplitudes with distance; this attenuation is
frequency dependent, and thus alters spectral shape.

The overall behavior of the data with respect to the stan-
dard model of equation (1) is illustrated in Figure 3, which
shows plots of Fourier acceleration data for the 2005 M 4.7
Rivière du Loup event, in comparison with two commonly
used attenuation curves. Both the vertical and geometric
mean horizontal components are plotted; it is a well-
documented observation that the attenuation trends of the
components are very similar for rock sites in ENA and that
the horizontal-to-vertical (H/V) ratio is stable and predictable
on average, being near unity at low frequencies and rising to
values near 1.4 at high frequencies (e.g., Siddiqqi and Atkin-
son, 2002). The reference models plotted on Figure 3 are
both bilinear with a transition in slope of the geometric
spreading at 60 km. Both models feature 1=R0:5 spreading
beyond 60 km, with a constant Q � 2000 over all distances
(Atkinson, 2012, showed that this is a representative Q
value). For distances within 60 km one model has geometric
spreading of 1=R (e.g., Boatwright and Seekins, 2011),
whereas the other has geometrical spreading of 1=R1:3 (e.g.,
Atkinson, 2004). The crustal amplification is set equal to
unity at all frequencies (appropriate for the vertical compo-
nent, but an underestimate for the horizontal component at
high frequencies). At low frequencies, the level of the curve
is entirely determined by the constraint provided by the
known seismic moment for the event (equation 1, which sets
the amplitude at R � 1 km). This places significant
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constraints on the attenuation models that will match the
data. For example, it is apparent in Figure 3 that the bilinear
model with 1=R to 60 km overpredicts low-frequency ampli-
tudes; this overprediction comes entirely from the inability of
this form to match the moment constraint.

The 1=R model also overpredicts high-frequency ampli-
tudes on Figure 3. At high frequencies, the level of the curve

is affected by both moment and stress drop. The stress
parameter is arbitrarily set at 500 bars for the results shown
in Figure 3. The high-frequency decay parameter, set at
κ0 � 0:005 s, likewise affects only the high frequencies.
(This can be easily shown from equation 1.)

It is important to note that the 2005 Rivière du Loup
earthquake is the only event in the dataset that has sufficient

Figure 3. Fourier amplitude data for 2005M 4.7 Rivière du Loup event for frequencies of 0.5, 1, 5, and 10 Hz. Two reference attenuation
models are shown, calculated for M � 4:7, for 500 bar stress value, using equation (1). Both attenuation models have 1=R0:5 geometric
spreading at R > 60 km, with constantQ � 2000 at all distances. One model has 1=R1:0 attenuation at close distances, whereas the other has
1=R1:3 attenuation at close distances. The color version of this figure is available only in the electronic edition.
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ground-motion data to adequately see the effective attenua-
tion curve over the entire range of distances from near source
(<20 km) to regional distances within a single event. For
other events, data must be combined over multiple events
in order to describe the attenuation. The manner in which
such data may be combined to best bring out the underlying
attenuation characteristics is a challenging problem, which
we address in this study.

Although data are sparse at close distances, they are
plentiful at regional distances (>100 km). Moreover, the
data tend to be well behaved in their attenuation trends at
regional distances, as shown by many studies (e.g., Ou
and Herrmann, 1990; Atkinson, 2004, 2012; Babaie Mahani
and Atkinson, 2012). However, inspection of plots such as
those shown in Figure 3 on an event-by-event basis reveal
differences from one event to another in the observed ane-
lastic attenuation parameter (curvature of the line away from
the R−0:5 line in log–log space). These differences likely
reflect the interplay between a number of factors, including
regional variability of anelastic attenuation, source directiv-
ity effects, focal depth effects, and the geographic distribu-
tion of stations for the particular event, with respect to the
source. This variability is important, as it will map into un-
certainty in near-source amplitudes, if we wish to use
regional amplitude data to infer near-source amplitudes.
Therefore, we consider the anelastic attenuation coefficient
separately for each event, so that we can more accurately cor-
rect the regional observations to near-source distances.

Effective Anelastic Attenuation and Its Variability

To explore the variability in inferred anelastic attenua-
tion that is seen from one event to another and to facilitate
the inspection of geometric spreading after removal of such
effects, we used just the regional data (within the 150–
500 km distance range) to determine the anelastic attenuation
parameter for each event, which we refer to as the effective
anelastic attenuation. The vertical component data are used
for this exercise, as they are most plentiful; note that the H/V
ratio shows no distance trends in this distance range (Sid-
diqqi and Atkinson, 2002), so the results are not sensitive
to which component is selected. The results are also rela-
tively insensitive to the distance range selected. Similar re-
sults were obtained for the 200–600 km distance range,
though there is a tendency toward finding slightly gentler
attenuation rates as the distance range is moved out toward
larger distances; this trend was also noted by Boatwright and
Seekins (2011) and is likely a consequence of the increasing
contributions of noise at larger distances.

The data for each event having at least five observations
in the 150–500 km distance range are fit to a variation of
equation (1) formulated for application to the regional dis-
tance range:

logY�f� � 0:5 logR � ci�f� � gi�f�R; �2�

in which logY�f� is the log(base10) of the observed Fourier
acceleration amplitude (cm=s; vertical component) at fre-
quency f, R is the effective distance from the source (km),
and gi�f� is the effective anelastic attenuation constant for
event i (for a given frequency). The level of the curve is set
by ci�f�, which is an event-amplitude term. The term
�0:5 logR on the left side of equation (2) adjusts all ampli-
tudes for an assumed geometric spreading of 1=R0:5, which
corresponds to surface-wave spreading in a half-space (e.g.,
see Atkinson, 2012, for discussion). Note that the anelastic
attenuation coefficient is inversely proportional to the quality
factor, Q:

gi�f� � −�πf�=�2:3Qiβ�; �3�
in which f is frequency (Hz) and β is the crustal shear-wave
velocity (assumed � 3:7 km=s; see Atkinson and Boore,
2006; this velocity can be different than the shear-wave
velocity near the source, in equation 1, although we use the
same value of 3:7 km=s for both in this article). We imposed
the constraint that gi must be negative. In other words, the
attenuation line must curve down, not up, as distance in-
creases; if a positive value of gi was obtained for an event,
it was reset to gi � 0:0. Figure 4 shows the obtained values
of gi for selected frequencies. The scatter of values is signifi-
cant (partly due to the combination of stochastic variability
and limited sampling), but the average values are consistent
with those found in previous studies.

Figure 5 plots the mean and standard deviation of the Q
values computed from the gi values. Only the gi values for
events of M ≥4 were used to determine the mean Q; this
restriction was imposed to minimize the noise bias in the at-
tenuation rates that is suggested by inspection of Figure 4
(particularly at lower frequencies). Two typical regional Q
models, as determined by Atkinson (2004) and Boatwright
and Seekins (2011), are also shown on Figure 5. These Q
models are typical of those for stable continental interiors,
which are characterized by higher Q values than are more
active tectonic regions (e.g., Benz et al., 1997). The study
by Atkinson (2004) used data out to larger distances than
that by Boatwright and Seekins (2011) (800 versus 600 km),
as well as using a larger more geographically variable data-
base. As noted by Boatwright and Seekins (2011), the curve
obtained forQmay shift up or down somewhat depending on
the distance range selected. For example, a sensitivity test of
the results on Figure 5 showed that using the 200–600 km
distance range (instead of 150–500 km) had the effect of
shifting Q values up by ∼200—probably due to the greater
noise included at larger distances. A least-squares best-fit
line to the mean Q values plotted on Figure 5 is

Q � 525f0:45: �4�

Geometric Spreading for R < 150 km

We can correct all observations to remove attenuation
using the gi�f� terms for that event, plus any specified overall
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geometric spreading model, then examine the attenuation re-
siduals with respect to that model to discern any trends or
misfits (where residual � log�Yobserved�– log�Ypredicted�; note
that we use base-10 logs throughout). The reason we use the
individual gi�f� terms to correct for anelastic attenuation,
rather than the more conventional approach of applying
an average regional anelastic attenuation model, is to force
a zero trend in the residuals at regional distances (where ane-
lastic attenuation is the dominant effect), for all events. This
allows us to more effectively isolate the remaining attenua-
tion trends at closer distances. A good initial indication of the
attenuation shape that will be required can be obtained by
looking at the residuals that are obtained if we apply the
regional-distance 1=R0:5 geometric spreading function, with
the event-based gi�f� values, over all distances. What we
would expect to see in such a plot is a zero-trend in residuals
on average over the 150–500 km distance range (over which
the attenuation model was defined). We would expect to see

significant positive residuals as we move from 150 km in
toward the source, because we expect the geometric spread-
ing coefficient to be significantly larger than 0.5 at close dis-
tances. Such a plot is provided in Figure 6 and does indeed
show the expected trends. However, a feature of the plot that
we did not expect is the clear evidence for apparent fre-
quency dependence of the geometric spreading rate. At
R < 50 km, the residuals have larger amplitudes at low
frequencies than they do at high frequencies. Because the
anelastic part of the attenuation has been removed by cor-
recting all observations using thegi�f� terms, the trends
are controlled by geometric spreading and suggest that it
is frequency dependent at close distances.

It is also noteworthy that the inferred shape of the attenu-
ation curve is not consistent across frequencies. At low
frequencies, we would infer a trilinear shape based on the
negative residuals from ∼70 to 150 km, transitioning to pos-
itive residuals at close distances; at higher frequencies the

Figure 4. Value of effective anelastic coefficient (gi), as determined for events with five or more observations in the 150–500 km distance
range, at frequencies 0.5, 1, 5, and 10 Hz. Each symbol represents the value determined for an individual earthquake. Note that the Mineral
Springs, Virginia, event has been included here, even though we do not know the site conditions for most of its stations; it is the higher (less
negative) of two gi values plotted at M 5.8 (with the lower being the 1988 Saguenay, Quebec, event). The values of gi are set to 0.0 if the
regression analysis yielded values greater than 0.0. The color version of this figure is available only in the electronic edition.
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evidence for a trilinear attenuation shape diminishes, and
tends to suggest a bilinear shape is required. Based on this
evidence, we judge that there is little advantage to use a tri-
linear form—it would improve the residuals slightly at low
frequencies, but at the cost of additional complexity and the
need to determine more parameters (two hinges, two geomet-
ric spreading slopes). We therefore conclude, as did Babaie
Mahani and Atkinson (2012), that the bilinear form strikes

the optimal balance between an overly simplistic model and
one that accounts for all of the complexity in the attenuation
behavior. In other words, while there is evidence that the at-
tenuation form is trilinear, at least at lower frequencies, the
evidence is not sufficiently compelling to warrant the added
complexity of the additional parameters that must be speci-
fied for the trilinear form.

We considered alternative values of the transition dis-
tance (from 40 to 150 km), and alternative values of the
near-distance geometric spreading parameter (from 1.0 to
1.5), to find combinations that remove the residual trends
seen on Figure 6 to the extent possible, while satisfying

the moment constraint on average for lower frequencies. The
residual trends strongly favor transition distances less than
70 km, which is not surprising given previous studies
(e.g., Atkinson, 2004, finds the first hinge of a trilinear model
is near 70 km, whereas Boatwright and Seekins, 2011, find
the best hinge point for a bilinear model is near 50 km). To
provide the best shape for the residual trends, we make the
initial assumption that the transition distance will be near
50 km. It then remains to find the near-distance slope that
will satisfy the moment constraint, fine-tuning the transition
distance if required. For each potential value of the near-dis-
tance slope (1:0; 1:2; 1:3;…), we find the misfit to the mo-
ment end of the Fourier spectrum (frequencies from 0.5 to
1.0 Hz). This misfit is minimized on average, for events
of M ≥3:5, for a near-distance slope of 1.3. An important
observation is that a geometric spreading function decaying
as R−1 from the source cannot match the moment constraint,
because the amplitudes at the lowest frequencies (0.5–1 Hz)
are overpredicted at regional distances with this model, even
if the transition distance is moved all the way out to 150 km.
On this basis, we choose a bilinear function that decays as
R−1:3 to 50 km, then as R−0:5 at greater distances. A slightly
smaller geometric-spreading slope (e.g., 1.1–1.2) could sat-
isfy the moment constraint if the transition distance were
moved out to a larger distance, but does a poorer job of
matching the shape of the residual trends.

Overall, we conclude that a near-distance geometric
spreading of 1=R1:3 with a transition distance of ∼50 km
provides the best balance between minimizing the overall
bias in low-frequency amplitudes (0.5–1 Hz), while also
minimizing residual trends versus distance to the extent
possible, over all frequencies and distances. Using this
bilinear geometrical spreading function, we adjust each ob-
servation for attenuation to compute attenuation-adjusted
amplitudes:

logY ′

ij�f� �
(
logYij�f� � 1:3 logRij − gi�f�Rij R ≤ 50 km

logYij�f� � 1:3 log 50� 0:5 log�Rij=50� − gi�f�Rij R > 50 km
; �5�

in which i is an event index and j is a station index (and gi�f�
is negative in sign). The mean value of logY ′

ij�f� for each
event, taken here using only the regional observations
(Rij > 150 km), is an estimate of the event term. If we sub-
tract the event term from logY ′

ij�f�, we obtain the residuals
for our event-based effective anelastic attenuation model
with the fixed bilinear geometric spreading model. The re-
siduals will have no trends in the distance range in which
the data were fitted to derive the effective anelastic model
(150–500 km). However, if we plot the residuals from the
regional attenuation model at closer distances, R < 150 km,
we can see any deviations of the geometric spreading model

Figure 5. Means and standard deviations of event-based Q val-
ues, determined from data 150–500 km for M ≥3:5. The Q models
of Atkinson (2004) and Boatwright and Seekins (2011) are shown
for comparison. The best fit to mean Q values is given by
Q � 525f0:45. The color version of this figure is available only
in the electronic edition.
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from the assumed form. Because the model is effectively
pinned at regional distances, positive residuals at close dis-
tances indicate that the near-distance attenuation rate is not
steep enough—we have not provided a sufficient correction
to reach the observed amplitudes, and this results in under-
prediction. Conversely, negative residuals at close distances
imply that the data are suggesting a less rapid attenuation
than that given by 1=R1:3.

It is important to emphasize that we use only the
regional observations (R > 150 km) to estimate the event
terms. This has several advantages. First, the regional obser-
vations are the most stable and well behaved, and thus the
overall level at regional distances is likely the best indicator
of overall source strength (see Shin and Herrmann, 1986; Ou
and Herrmann, 1990; Atkinson, 2012). Furthermore, consis-
tent application of this practice ensures that there is no bias in

source terms obtained based on availability or lack thereof of
near data. Finally, it means that the shape of the source terms
and their relative amplitudes between events are fixed, with
the level of the source amplitudes scaling by a constant that
depends on the assumed geometric spreading model within
150 km. This facilitates identification of the geometric
spreading rate that will scale the source terms to the correct
level as given by the moment constraint.

Figure 7 plots the residuals calculated as described
above, along with the mean and its standard error in distance
bins. As expected, the residuals are zero on average for dis-
tances beyond 150 km. However, we have not been entirely
successful in removing the frequency dependence in residual
trends (which was also seen in Fig. 6). The residuals are near
zero (or slightly negative) at 5–10 Hz, but there is still a slight
trend in the low-frequency residuals (reflecting the apparent

Figure 6. Residuals obtained assuming 1=R0:5 geometric spreading function with the event-based gi�f� values over all distances. Sym-
bols with error bars show the mean and standard error of residuals in distance bins with end points at 30, 50, 70, 100, 150, 250, 350, and
500 km. The color version of this figure is available only in the electronic edition.
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trilinear shape feature that we chose to ignore) and a
tendency to positive residuals at close distances. This would
imply a more rapid effective geometric spreading at low
frequencies. We use the term “effective geometric spreading”
to stress that this is purely an empirical description of
how the amplitudes appear to decay and not necessarily a
reflection of the true underlying geometric spreading. For
example, the positive residuals at close distances at lower
frequencies might be reflecting average radiation pattern
and directivity effects that do not average out over the focal
sphere. Further study of the reasons for apparently high am-
plitudes at close distances and their frequency dependence is
underway and will be the subject of a future paper.

The apparent nature of the geometric spreading at
R < 150 km is interesting. At high frequencies, the residuals
are slightly negative, while they are positive at low frequen-
cies. At lower frequencies, there is some evidence for a tri-

linear form in the geometric spreading. This is particularly
pronounced for the lowest frequencies (0.5–1 Hz), as posi-
tive residuals at 20 km become negative residuals near
100 km, before returning to 0 residuals at R > 150 km. This
supports the trilinear shape noted previously by Atkinson
(2004) and Atkinson and Mereu (1992). However, the evi-
dence for a trilinear shape washes out as frequency increases.

The frequency dependence of the effective geometric
spreading is further illustrated in Figure 8, which plots the
average residuals in distance bins versus frequency. Note that
for frequencies of 5 Hz and greater, the attenuation model
produces average residuals with a slightly negative bias at
close distances. At low frequencies, there is a positive bias
at close distances and a negative bias near 100 km (while
estimates are nearly unbiased at 60 km and beyond 150 km).
We reiterate that the residuals do not necessarily imply true
frequency dependence in the geometric spreading, only in its

Figure 7. Residuals obtained when amplitudes are adjusted for a bilinear geometric spreading model (1=R1:3 to 50 km, 1=R0:5 beyond),
with event-based effective anelastic term. Symbols with error bars show the mean and standard error of residuals in distance bins with end
points at 30, 50, 70, 100, 150, 250, 350, and 500 km. The color version of this figure is available only in the electronic edition.
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effective value as determined here. For example, we have
assumed that the Q model calculated from regional observa-
tions also holds at closer distances. If Q was dependent on
distance, this could map into an apparent frequency depend-
ence of geometric spreading.

There are several possible ways that frequency depend-
ence in the effective geometric spreading rate near the source
might be parameterized, including different geometric
spreading slopes as a function of frequency and/or the use
of different distances at which to transition to 1=R0:5 spread-
ing. Either bilinear or trilinear forms could be considered.
However, at low frequencies not all forms will obey the mo-
ment constraint, as discussed earlier. These were the issues
that were balanced in concluding that a reasonable choice is
to use the bilinear model (1=R1:3 to 50 km, 1=R0:5 beyond).
However, in order to accommodate the remaining residuals,
the predicted near-distance (R < 50 km) amplitudes should
be multiplied by a frequency-dependent empirical adjust-
ment function. The adjustment function is used to reproduce
the observed higher amplitudes at low frequencies at close
distances, without actually changing the geometric spreading
term or the implied source amplitudes. From inspection of
Figure 8, we define a low-frequency adjustment factor CLF,
which modifies the amplitudes for f ≤ 1 Hz. In log units
we have

CLF �
(
0:2 cos

�
90 R−h

1−h

�
R ≤ h

0:2 cos
�
90 min�R;50�−h

50−h

�
R > h

�6�

for cosine in degrees (replacing 90 with π=2 if the cosine is
being computed in radians), in which h is focal depth and R
is the effective distance from the source (see the discussion

below equation 1). The reason focal depth is introduced is to
provide a function in which the near-distance amplitudes are
increased at zero surface distance (i.e., at the epicenter), but
not at the source itself (i.e., R � 1 km); an arbitrary focal
depth that is typical for the region can be assumed. CLF

attains a maximum value of 0:2 log units (factor of ∼1:6 in
amplitude) at 0.0 km epicentral distance and decays to
0:0 log units for R ≥ 50 km. Equation (6), for the hypotheti-
cal observations at R < h, is written to emphasize that the
function is forced back to 0:0 log units (factor of unity) at
R � 1 km, so that the source amplitudes are unaffected.
In other words, this function affects observed low-frequency
observations at near-epicentral distances but is not consid-
ered a source effect.

We choose to taper the low-frequency factor as fre-
quency (f) increases beyond 1 Hz, such that it is 0:0 log units
at f ≥ 5 Hz. It is acknowledged that this is a somewhat
conservative choice, implying there will be a negative bias
in high-frequency amplitudes at close distances (i.e., we are
modeling the positive residual trends on Fig. 7, but not the
negative trends). Thus we define a taper function that has a
value of 1.0 for f ≤ 1 Hz, declining linearly (in log–log
space) to a value of 0.0 for f ≥ 5 Hz:

TC � max��1 − 1:429 log�max�f; 1���; 0�: �7�

To predict Fourier amplitudes using the model, we
multiply equation (1) by the new factor, F�f; R�, such that

logF�f; R� � TCCLF: �8�

It may be noted that application of this factor is equiv-
alent to having a geometric spreading at <50 km that de-
pends on frequency, according to the following equation:

G′�R; h; f� � 10TCCLFG�R�: �9�

Using this equation, we note that extrapolation to the
source (1 km) of motions at distances beyond 50 km produ-
ces the same source amplitude as those obtained using
the function G�R� (G�R� � 1=R1:3 in our case), and thus the
moment constraint at close distances is maintained. The
(frequency-dependent) differences in the two geometric
spreading functions appear only for distances between 1
and 50 km, as shown in Figure 9.

Application of the adjustment function of equation (8)
removes the low-frequency bias in the residuals at distances
less than 50 km. Note that we did not attempt to model the
tendency to overprediction of amplitudes near 100 km. We
accept the overprediction of amplitudes near 100 km as a
reasonable compromise to avoid making the functional
form more complex (i.e., using a trilinear model in addition
to the apparent frequency dependence in the near-distance
amplitudes).

Figure 10 compares the adopted bilinear attenuation
model with the Rivière du Loup amplitude data and shows

Figure 8. Mean bias (log units) for binned residuals, with
respect to geometric spreading model of 1=R1:3 to 50 km, 1=R0:5

beyond, with event-based anelastic attenuation terms. The color
version of this figure is available only in the electronic edition.
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the effect of the frequency-dependent effective geometric
spreading adjustment factor. The line is from equation (1)
with the bilinear model used in equation (5) and the event-
based attenuation; the squares are from equation (1), but
using the effective geometrical spreading function of equa-
tion (9). The positive residuals with respect to the line are
clearly seen at low frequencies at <50 km. The use of the
frequency-dependent geometrical spreading correction factor
largely removes the positive bias in the residuals for distan-
ces less than 50 km. Note that no crustal amplifications are
applied, but these would be negligible for the vertical com-
ponent and also negligible for the horizontal component at
low frequencies. The prediction model is reasonably consis-
tent with the spectral amplitudes at all frequencies and
distances.

In Figure 10, the amplitude levels and shape of the
prediction lines are controlled by: (1) the known seismic mo-
ment, which fixes the near-source amplitude levels at low
frequencies; (2) the stress parameter, which scales the
high-frequency amplitudes near the source; (3) the effective
geometric spreading model; and (4) the gi�f� values for the
Rivière du Loup event (sets the shape of the curves at
regional distance). For forward modeling of a future event
of a specified moment, we would not know the exact values
of stress parameter or of gi�f�. In this case, if we wished to
forecast average amplitudes, we would apply mean values of
stress and anelastic attenuation. Alternatively, if we wished
to sample aleatory variability, we could apply the distribution
of stress and gi�f� values in simulations. We note that the
results in this paper provide data on those distributions.

Source Parameters Inferred from Ground-Motion
Observations

The developed bilinear model describes the effective at-
tenuation of Fourier amplitudes from source-to-site distances
of ∼15 km to regional distances (500 km). We can also use
the model to infer the effective source amplitudes (at
R � 1 km) for each event, by correcting for the attenuation
effects and taking the average level at the source. As de-
scribed in the previous section, the event terms determined
from the vertical-component regional data (150–500 km) are
used to define the source amplitudes, due to their robustness
and stability. From equation (5), we can write the effective
source amplitude for event i as

logYSRCi
�f� � 1

N�i�
XN�i�

j�1

�logYj�f� � 1:3 log 50

� 0:5 log�Rj=50� − gi�f�Rj�; �10�

in which the sum is taken overN�i� observations, collected at
stations j � 1, N�i�, at distances Rj from 150 to 500 km for
event i. This equation does not depend on the geometrical
spreading modification in equation (8), because the adjust-
ment only applies for recordings within 50 km. We use the
vertical component of motion as a proxy for the horizontal,
because any amplification effects due to passage through the
near-surface velocity gradient are minimized (e.g., Lermo
and Chavez-Garcia, 1993); furthermore, vertical-component
data are more plentiful. The selection of the vertical compo-
nent is not critical here, as the horizontal and vertical com-
ponent amplitudes would imply similar source amplitudes, if
we assume the average H/V ratio is simply the crustal am-
plification effect (e.g., Atkinson and Boore, 2006); as noted
previously, the horizontal and vertical components attenuate
in the same manner.

Figure 11 plots the effective source spectrum (at 1 km)
inferred from theM 4.7 Rivière du Loup event, based on cor-
recting for the attenuation model for the vertical-component
regional observations. Error bars (barely visible at most
frequencies) show the standard error of the source amplitudes,
computed from the standard deviation of the mean amplitude,
divided by the square root of the number of observations (mi-
nus one). It is the number of observations that results in small
standard errors, as the standard deviation is significantly
larger (∼0:2 log units). The actual uncertainty in the effective
source amplitudes would be larger than indicated by the stan-
dard error of the estimates, as it should also include uncer-
tainty in the applicability of the model, which is difficult to
assess. The effective source spectrum is in reasonable agree-
ment with a Brune source model forM 4.7, with the inferred
stress parameter being a little less than 500 bars, though we
note a deficit in spectral amplitudes near 2 Hz, suggestive of
source complexity.

Other examples of effective source spectra are shown in
Figures 12 and 13, for events of M 5.0 (Au Sable Forks and

Figure 9. Standard geometric spreading,G�R�, and the effect of
introducing frequency-dependent geometric spreading function,
G′�R; h; f�, for a hypocentral depth of 10 km and frequencies of
0.5 and 5.0 Hz. The color version of this figure is available only
in the electronic edition.
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Val-des-Bois) and M 5.8 (Saguenay and Mineral Springs).
Poorly recorded events, such as the Saguenay and Au Sable
Forks events, have very jagged source spectra with much
variability, reflecting uncertainty in the actual levels of the
effective source spectra.

For all four of the events in Figures 12 and 13, the over-
all level of the amplitude spectrum at low frequencies is
slightly higher than the theoretical level for the known mo-
ment, implying that a shift in the spectrum to match the

Brune level at low frequencies is required. This is equivalent
to a required change in the constant C of equation (1) that
equates observed amplitudes with Brune-model parameters.
In Figure 14, we plot the approximate amount (in log units)
by which the constant C must be adjusted to make the Brune
model spectrum match the effective source spectrum at low
frequencies. For small events (M <4:5), we calculated this
factor based on the effective adjustment required at frequen-
cies near 1 Hz, because the lower-frequency amplitudes are

Figure 10. Fourier amplitude data from M 4.7 Rivière du Loup (circles) compared with Brune model predictions for M 4.7, 500 bars,
including adjustment factor F (squares; no crustal amplifications applied). The line shows the standard bilinear model (1=R1:3 to 50 km,
1=R0:5 beyond) with an event-based anelastic attenuation term, attenuated from the source using the regionally determined event terms. The
color version of this figure is available only in the electronic edition.
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contaminated by noise. We estimated the observed 1 Hz
source amplitude by taking a three-point average of the
(log) values around 1 Hz (0.8, 1.0, 1.2 Hz values). We com-
pared this with the predicted value of the long-period spectral

level based on the Brune model for the corresponding seis-
mic moment, assuming that for small events 1 Hz is on the
displacement end of the spectrum. The difference between
the observed and predicted log values (at 1 Hz) is the calcu-
lated adjustment factor required. For the larger events
(M ≥4:5), the assumption that the 1 Hz amplitude is on
the displacement end of the spectrum is not valid (amplitudes
are dropping progressively lower than that expectation as the
corner frequency is approached). Furthermore, we have usa-
ble signal at frequencies below 1 Hz for most of the larger
events. Therefore, for events of M ≥4:5 the adjustment fac-
tor was determined by inspection as the shift is required to
bring the Brune-model spectrum and the observations into
agreement on average over the usable part of the low-
frequency band (typically 0.5–1.0 Hz).

It is observed on Figure 14 that the required offset is zero
on average (this was a condition that the attenuation model
was required to satisfy, as described previously). We also plot
the Brune stress parameter required to match the high-
frequency level of the effective source spectra, both before
and after shifting the spectra by the adjustment needed to
match the moment constraint. The average log stress for
events of M ≥4:5 is somewhat lower after the adjustments
(2.74 versus 2.99); and, more importantly, the standard
deviation of log stress is lower after the adjustment is made
(0.32 versus 0.48). Overall, the average stress drop to asso-
ciate with this attenuation model is ∼600 bars, which applies
for events of M ≥4:5. As noted by Boore et al. (2010), this
stress is tied to the steep attenuation rates that are assumed to
apply from the source to 50 km. A slower attenuation would

Figure 11. Effective source spectra (with standard error bars) at
a distance of 1 km from the source forM 4.7 Rivière du Loup event,
in comparison to the Brune-model spectra for 500 bar stress. The
color version of this figure is available only in the electronic edition.

Figure 12. Effective source spectra (with standard error bars) at
a distance of 1 km from the source forM 5.0 events, in comparison
to the Brune-model spectra for 200 and 500 bar stress. The color
version of this figure is available only in the electronic edition.

Figure 13. Effective source spectra (with standard error bars) at
a distance of 1 km from the source for M 5.8 events, in comparison
to the Brune-model spectra for 500 bar stress. The color version of
this figure is available only in the electronic edition.
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imply lower stresses, in order to match the same observations
at regional distances (see also E. Yenier and G. M. Atkinson,
unpublished manuscript, 2014). Thus, it is important to rec-
ognize that these stress parameters can only be used in the
context of the whole package, including the specified steep
attenuation from the source. This is why the stress parame-
ters for these events are much higher than typical values in-
ferred from other studies that used a lower attenuation rate
(as shown by Boore et al., 2010). Furthermore, it means that
the stress parameters from this study cannot be readily com-
pared with values obtained for events in other regions, from
other studies that used different attenuation rates. A more
meaningful point of comparison in this respect would be
the actual predicted ground-motion spectra at physically real-
izable distances (e.g., epicentral distances > 0).

Another interesting feature that is observed in Figure 14
is that the stress parameter values are magnitude dependent,
with events of M <4:5 having noticeably lower stress
parameter values. This is in accord with previous studies
(Atkinson, 1993; Mereu et al., 2013) that have reported mag-
nitude-dependent stress implying non-self-similar scaling for

small events in ENA. This is not a bandwidth effect (i.e., a
possible consequence of having insufficient bandwidth at
high frequencies to see the high-frequency level) because we
can readily verify by inspection of the source spectra of the
study events that the high-frequency level, and thus the stress
parameter is well defined for most events ofM >3:6. Mereu
et al. (2013) point out that the observed scaling behavior of
the stress parameter at lower magnitudes is consistent with
the theoretical expectations based on constant-width scaling
of fault size with magnitude. Further study of the source
characteristics of ENA events is clearly important but remains
a challenging task due to the lack of near-source observations
over a suitable magnitude range.

Finally, we can look at the effective source amplitudes as
a function of magnitude to develop an average model of
effective source spectra. Figure 15 plots the inferred 1 and
5 Hz amplitudes at R � 1 km (after correcting for the attenu-
ation model) versus magnitude, along with linear best-fit
lines. The adjustment factors for the source terms, as indi-
cated in Figure 14, are not applied in these plots, as the point
is to show the inferred trend of the source amplitudes with
magnitude that are present in the actual data (before the in-
terpreted adjustment factors to match the moments). The
coefficients of the lines are given in Table 1. We caution that
these fit lines are not well constrained by data aboveM 5 and
should not be extrapolated beyond the data range. We use the
coefficients of the fitted lines to predict the average effective
source spectrum forM 3.5, 4.5, and 5.5 that are suggested by
the data, and we show these on Figure 16 in comparison to
a standard Brune model for a stress of 500 bars. Overall, the

Figure 14. (a) Adjustment to constant C needed to match
low-frequency effective source spectral amplitudes to moment con-
straint. (b) Brune stress parameter, before and after adjusting con-
stant C. The color version of this figure is available only in the
electronic edition.

Figure 15. Effective source amplitudes (R � 1 km) versus mo-
ment magnitude, at 1 and 5 Hz. The color version of this figure is
available only in the electronic edition.
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effective source spectra appear to be in good agreement
with the 500 bar Brune point-source model. The deviations
at f < 1 Hz for M <5 are largely attributable to the com-
monly observed noise peak near 0.3 Hz (e.g., Peterson,
1993), which swamps the actual signal for small events.
The effective source spectra are slightly above this level
at M 5.5, because the adjustment constant is positive for
the four largest events in our dataset (as seen in Figs. 12
and 13). For all four of these events, the ground motions ob-
served at both low and high frequencies were somewhat
larger than would be suggested by their moment magnitudes.
It is not known whether this is a general feature of such
events in ENA or merely a random result from a very small
sample of such events.

Conclusions

Fourier spectral amplitudes for events of M 3.5–5.8
in ENA (specifically the region of ENA that includes
southeastern Canada and the northeastern United States) can
be modeled with a Brune point-source model with a stress
parameter of approximately 500–600 bars. The high near-
source ground-motion amplitudes that are implied by such
a large stress value decay steeply within 50 km of the source,
with an effective geometric spreading rate of 1=R1:3. Beyond
50 km, amplitudes are well modeled with a geometric
spreading rate of 1=R0:5 and an associated Q � 525f0:45.
This attenuation model is similar to that reported by Boat-
wright and Seekins (2011), with the important exception
of our finding of a steeper near-distance geometric spreading
rate. The steeper effective geometric spreading at R < 50 km
is strongly supported by the amplitude data. The data also
suggest that the effective geometric spreading has some fre-
quency-dependent features. We have chosen to model such

features as empirical amplitude adjustment factors that could
potentially be attributed to a number of factors, including the
possibility that complex source and radiation effects do not
average out over the focal sphere. Understanding such effects
is the subject of future investigations. The applicability of the
attenuation model to other parts of ENA, including the central
United States (New Madrid) is also the subject of future
investigations.

Data and Resources

The database for study is the Fourier amplitude database
for event in ENA as compiled and processed by Assatourians
and Atkinson (2010; www.seismotoolbox.ca, last accessed
May 2013), updated through 2011.Moment magnitudes were
extracted from R. B. Herrmann’s Moment Tensor Solution
website (http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/;
last accessed August 2012). Moment tensors for moderate-
to-large events (M >5) can be obtained by the Global
Centroid Moment Tensor project (www.globalcmt.org; last
accessed September 2012). Figures in this study were pro-
duced by CoPlot software. M values were estimated for
the remainder of the events using regional amplitude data cali-
brated to events with known moment as described by Atkin-
son and Babaie Mahani (2013).
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Figure 16. Fitted model amplitudes at source for M 3.5,
4.5, and 5.5 in comparison to the Brune model with
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available only in the electronic edition.
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