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ABSTRACT
Boore et al. (2022; hereafter, Bea22) described adjustments to a host-region ground-motion
prediction model (GMPM) for use in hazard calculations in a target region, using Chiou and
Youngs (2014; hereafter, CY14) as the host-region model. This article contains two mod-
ifications to the Bea22 procedures for the host-to-target adjustments, one for the source
and one for the anelastic attenuation function. The first modification is to compute logic-
tree branches for the source adjustment variable ΔcM given in Bea22 assuming that the
host- and target-region stress parameters are uncorrelated, instead of the implicit
assumption in Bea22 that they are perfectly correlated. The assumption of uncorrelated
stress parameters makes little difference for the example in Bea22 because the standard
deviation of the host-region stress parameter is much less than that of the target-region
stress parameter. However, this might not be the case in some future applications. The
second modification is to the host-to-target anelastic attenuation path adjustment. The
adjustment in Bea22 involves a distance-independent change in the γ variable that controls
the rate of anelastic attenuation in the CY14 GMPM. This article proposes a method to
account for a distance dependence in the adjustment. Such a dependence is needed for
short-period ground-motion intensity measures (GMIMs) at distances greater than
100 km, with the importance increasing with distance. For the example in Bea22, the ratio
of GMIMs computed with the revised and the previous adjustment to γ is less than about a
factor of 1.05 at distances within about 100 km, but it can exceed a factor of 2 at 300 km for
short-period GMIMs.

KEY POINTS
• Modifications are needed to the host-to-target adjust-

ments suggested by Boore et al. (2022) (Bea22).
• Modifications to FS assumes uncorrelated stress parame-

ters and to FA includes R dependence.
• Bea22 with modifications has been and is being used in

high-level seismic hazard analyses globally.

INTRODUCTION
The ground motions needed for a probabilistic seismic hazard
analysis (PSHA) are often based on adjusting a ground-motion
prediction model (GMPM) developed for a host region to be
applicable to a target region for which the PSHA will be calcu-
lated. As discussed in Bommer and Stafford (2020), this can be
conveniently done by adjusting parameters on a backbone
GMPM, particularly if that model uses functional forms that

facilitate such adjustments. One such model is that of CY14,
for which

lnY ∼ FS � FA, �1�

in which Y is a ground-motion intensity measure (GMIM; e.g.,
pseudo spectral acceleration [PSA] response spectra); FS is an
earthquake source function dependent on the moment magni-
tude M; and FA is an anelastic attenuation function dependent
on both source-to-site distance and earthquake magnitude.
This process has inherent modeling, or epistemic, uncertainties
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that must be accounted for in PSHA. Bea22 describes proce-
dures for obtaining epistemic-uncertainty logic-tree branches
for the host-to-target adjustments of FS and FA. The Bea22
procedures were used in a recently completed seismic hazard
project at the Idaho National Laboratory (Idaho National
Laboratory, 2022; hereafter, INL22).

This article discusses modifications to FS and FA that arose
since the publication of Bea22. These modifications do not
change the hazard calculated at the Idaho National Laboratory
by the recent project, but they might be needed in future haz-
ard calculations. The modification to FS is an alternative
method for using the uncertainty in the host-and-target Δσ
in computing the logic-tree branches of ΔcM , the parameter
that controls the host-to-target adjustment of FS. The modifi-
cation to FA allows the host-to-target adjustment parameter
Δγ to be a function of distance as well as magnitude.

MODIFICATION TO THE FS HOST-TO-TARGET
ADJUSTMENT
Bea22 shows how the source function in CY14 can be modified
to account for host-to-target differences in the stress param-
eter. The modified source function is given by equation (2):

FS � c2�M − 6� � c2 − c3
cn

ln�1� ecn�cM�ΔcM−M�� − �c2 − c3�ΔcM ,

�2�
in which

ΔcM � χFS2RS
2
3
log

ΔσT
ΔσH

, �3�

the logarithm is base 10; and χFS2RS is a period-dependent func-
tion (given in equations A17 and A18 in Bea22) that also

depends on the sign of log ΔσT
ΔσH

. The coefficients c2, c3, cn,

and cM in equation (2) are given in CY14.
If the cumulative distribution function (CDF) of ΔcM is

known, then logic-tree branches for ΔcM can be determined
using an approximation to the CDF. The one used in Bea22
was the Miller and Rice (1983) five-level approximation, for
which the CDF levels are 0.034893, 0.211702, 0.500000,
0.788298, and 0.965107, with weights of 0.101080, 0.244290,
0.309260, 0.244290, and 0.101080 for branches 1–5, respec-
tively.

A CDF for ΔcM was never determined explicitly in Bea22.
Instead, the logic-tree branches for ΔcM were computed from
the CDFs of ΔσH and ΔσT . Because its uncertainty is so small,
the CDF for ΔσH was a lognormal distribution given by the
mean and standard deviation of lnΔσH , using values in table
1 of Stafford et al. (2022; hereafter, Sea22). The CDF for ΔσT
was obtained from a simulation procedure described in
Bea22. This procedure involves fitting a bilinear stress param-
eter versus magnitude function to stress parameters in many
simulated datasets (4000 in Bea22). The simulated datasets

were constructed by adding random noise to the dataset
obtained from inversions of real data in the target region,
using the uncertainty in the stress parameter for each event
in the dataset. Following Sea22, the bilinear function for M ≥
5:0 was flat, and the level of the stress parameter for this flat
portion (ΔσM5) is the critical parameter in determining the
host-to-target adjustment of the CY14 source function. For
each simulated dataset, a CDF of ΔσT was constructed using
the mean and standard error of ΔσM5 assuming a lognormal
distribution, and the CDFs for all simulated datasets were
then averaged to find the final CDF of ΔσT . For the stress
parameters used as an example in Bea22, Q–Q plots show
the final CDF to be lognormally distributed for values of
ΔσT within about 1.5 standard deviations of the median
value. The CDFs for ΔσH and ΔσT were approximated by
the five-point Miller and Rice representation. The logic-tree
branches for ΔcM were then computed by substituting the
ΔσH and ΔσT for the same Miller and Rice level into equa-
tion (3), one level at a time. This is equivalent to assuming
perfect correlation of ΔσH and ΔσT . If, on the other hand,
ΔσH and ΔσT are uncorrelated, it is straightforward to con-
struct a CDF for ΔcM using the known CDFs ofΔσH andΔσT ,
as obtained using the Bea22 procedures described in this
paragraph. These CDFs can be sampled independently to
obtain many pairs of uncorrelated host- and target-region
stress parameters; substituting these pairs into equation (3)
and ordering the results will yield a CDF of ΔcM . This does
not assume that ΔcM has a normal distribution. This CDF can
then be sampled using a finite-level approximation to obtain
the values of ΔcM for the logic-tree branches. This is an
addendum to the procedure described in Bea22.

Although the procedures just described can be used to con-
struct logic-tree branches for ΔcM if ΔσH and ΔσT are uncor-
related or are perfectly correlated, it is instructive to consider a
simplification if it is assumed that ΔcM has a normal distribu-
tion. To do this, it is convenient to write equation (3) in terms
of the natural logarithm (because that is what is used in the
CY14 GMPM) and expand the logarithm of the stress-param-
eter ratio into two terms, as follows:

ΔcM � χFS2RS
2
3
�log e��lnΔσT − lnΔσH�: �4�

With the assumption that ΔcM has a normal distribution,
the ΔcM for the logic-tree branches are the values correspond-
ing to the desired levels of the CDF ofΔcM . These values can be
obtained if the mean ΔcM and standard deviation σ of ΔcM are
known. For example, the CDF levels for the five-level approxi-
mation of Miller and Rice (1983) are 0.034893, 0.211702,
0.500000, 0.788298, and 0.965107 (these were used in
Bea22), and the ΔcM corresponding to these levels are given
by adding −1:813σ, −0:801σ, −0:000σ, 0:801σ, and 1:813σ
to ΔcM .
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The mean of ΔcM is given using the means of lnΔσT and
lnΔσH in equation (4). The standard deviation of ΔcM can be
written as follows:

sd�ΔcM� � χFS2RS
2
3
log e sd�lnΔσT − lnΔσH�, �5�

in which “sd()” stands for “standard deviation of the terms
inside the parentheses”. The standard deviation of the differ-
ence in lnΔσ depends on the correlation of ΔσT and ΔσH ,
according to equation (6):

sd�lnΔσT − lnΔσH� �
�������������������������������������������
ξ2T � ξ2H − 2ρTHξTξH

q
, �6�

in which ξT � sd�lnΔσT�,
ξH � sd�lnΔσH�, and ρTH is
the correlation coefficient
between lnΔσT and lnΔσH .
If the target- and host-region
stress parameters are uncorre-
lated, ρTH � 0 and

sd�lnΔσT − lnΔσH�

�
�����������������
ξ2T � ξ2H

q
: �7�

The other extreme is that the
two stress parameters are per-
fectly correlated, in which case
ρTH � 1, and

sd�lnΔσT − lnΔσH�
� ξT − ξH : �8�

If the host- and target-
region stress parameters are
determined independently, as
is usually the case (e.g., in the
INL Senior Seismic Hazard
Analysis Committee level 3
study used in Bea22), equa-
tion (7) is the proper equation
for determining the logic-tree
branches ofΔcM using the sim-
plified procedure if ΔcM is
assumed to have a normal dis-
tribution.

To illustrate the various
procedures for determining
the logic-tree branches of
ΔcM , Figure 1 shows the ΔcM
CDFs and associated logic-tree
values computed in several
ways:

1. the addendum to Bea22 proposed in this article, in which
independently sampled CDFs of ΔσT and ΔσH are used to
construct the CDF of ΔcM ; and

2. the simplified procedure that assumes a normal distribution
forΔcM and uncorrelated stress parameters (in this case, the
standard deviation of ΔσT needed for this calculation is
obtained by averaging the approximate σs obtained by
dividing ΔσT for each Miller and Rice level by the equiv-
alent number of standard deviations—1.813, 0.801, 0.801,
and 1.813 for levels 1, 2, 4, and 5, respectively); and

3. the Bea22 procedure, assuming perfectly correlated stress
parameters.
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Vertical lines show cM values for the five Miller and Rice (1983) CDF levels
(as given by the intersection of the Miller and Rice levels with the CDF curve)

CDF from sampling CDFs, assuming s are uncorrelated
CDF, using standard deviations of and assuming s are
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CDF, assuming stress parameters are perfectly correlated
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Figure 1. The cumulative distribution function (CDF) ofΔcM and the values for the logic-tree branches for 1 s pseudo
spectral acceleration [PSA(0.1 s)] computed in various ways (see legend and Modification to the FS Host-to-Target
Adjustment section). The horizontal lines are the five-level Miller and Rice (1983) approximation to the CDF. The
Sea22 value for the standard deviation of lnΔσH (sd�lnΔσH�) for the host region (0.031) was used in the
adjustment, and the value for sd�lnΔσT� used for the dashed line was that used in Bea22 (0.233). The color
version of this figure is available only in the electronic edition.
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The results for the first two procedures—both of which
assume uncorrelated host- and target-region stress parame-
ters—are almost identical, probably because the distributions
of the stress parameters are close to being normal. However,
this may not always be the case and I recommend using pro-
cedure 1, which involves computing a CDF of ΔcM from the
CDFs of ΔσT and ΔσH .

The other interesting result in Figure 1 is that the logic-
tree values of ΔcM are similar for both extreme assumptions
of the stress parameters: perfectly correlated (as in Bea22) or
uncorrelated. The reason for the similar results is that in the
example used in Bea22, sd�lnΔσH� is much smaller than
sd�lnΔσT� (0.031 and 0.233, respectively), so there are only

small differences in the logic-
tree branches computed using
either equation (7) or equa-
tion (8): sd�lnΔσT − lnΔσH�
� 0:235 and 0.202 for equa-
tions (7) and (8), respectively.
The standard deviation for the
host-region stress parameter
was small because it was from
the inversion of the CY14
GMPM by Sea22; on the other
hand, the target-region stress
parameter came from the inver-
sion of a sparse data set, result-
ing in a large standard
deviation. To demonstrate the
dependence of the results on
the standard deviation of ΔσH
when the stress parameters are
assumed to be perfectly corre-
lated, Figure 2 shows the results
of procedures 2 and 3 when the
value of sd�lnΔσH� was
increased from 0.031 to 0.100.
This was done to illustrate the
sensitivity of the logic-tree
branches to the relative sizes
of the standard deviations of
ΔσH and ΔσT . The standard
deviation of sd�lnΔσT − ln
ΔσH� is now 0.254 and 0.133
for the uncorrelated and per-
fectly correlated cases, respec-
tively, compared with 0.235
and 0.202 before. The conse-
quence is that the spread of
the ΔcM branches increases
slightly for the uncorrelated
case, and decreases significantly
for the perfectly correlated case.

If the host- and target-region stress parameters were assumed to
be perfectly correlated and both had the same standard deviation,
the five values of ΔcM would coalesce into that for the middle
branch; formally, there would be no epistemic uncertainty in
ΔcM , an unrealistic result.

MODIFICATION TO THE FA HOST-TO-TARGET
ADJUSTMENT
Details of the modification
The modified CY14 backbone-model function for FA is given
by the following equation:

FA � �γ� Δγ�RRUP, �9�
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Figure 2. The CDF of ΔcM and the values for the logic-tree branches for PSA(0.1 s), assuming that the host- and
target-region stress parameters are uncorrelated or are perfectly correlated. The horizontal lines are the five-level
Miller and Rice (1983) approximation to the CDF. A value of 0.1 was used for the standard deviation of lnΔσH for
the host region (sd�lnΔσH�) in the adjustment, whereas the value for sd�lnΔσT� was that used in Bea22 (0.233).
The color version of this figure is available only in the electronic edition.
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in which RRUP is the closest distance from the rupture surface
to the site, and

γ � cγ1 �
cγ2

cosh�max�M − cγ3,0��
: �10�

CY14 contains the values of the coefficients cγ1, cγ2, and cγ3.

The computation of Δγ is discussed in this section.
In the procedure described in Bea22 for obtaining the logic-

tree branches of Δγ, response spectra (PSA) are simulated for
many magnitudes and distances, for each period of interest. The
simulations are done for both the host and target regions, using
the point-source stochastic model (Boore, 2003). This procedure
requires the specification of the Fourier spectrum of the GMIM
of interest (PSA, in this case). In Bea22, the Fourier acceleration
spectrum (FAS) model developed by Sea22 was used for the sim-
ulations in both regions, the only difference being the Q param-
eters, which are region dependent. Following the procedure
adopted in the Bea22 analysis, the uncertainties in the Q param-
eter are used to generate 1000 sets of those parameters, taking
into account the correlation of the parameters. The PSA simu-
lations are done for each set of Q parameters. The simulated
PSAs for the two regions are converted to an adjustment to
γ, using equation (11):

ΔγSIM � ln

�
PSAT

PSAH

�
=RRUP: �11�

Figure 3 is an illustration of the steps used in computing
ΔγSIM, for the host and region models used in Bea22.
Figure 3a shows the Q values for the two regions, for two mag-
nitudes (Q is a function of magnitude because the power of
frequency in the computation of Q is a function of magnitude).
Q for the target region is less than for the host region except for
frequencies less than about 0.5 Hz, and therefore the simulated
PSA for the target region will be less than for the host region
except for oscillator periods (T) less than about 2 s. The simu-
lated PSAs for both regions are shown in Figure 3b, for T =
0.1 s. The natural logarithm of the ratio of the target- and
host-region PSAs are displayed in Figure 3c, and Figure 3d
shows ΔγSIM computed from equation (11).

The simulations are done for a set of RJB distances (the clos-
est horizontal distance from the site to the surface projection of
the fault-rupture plane), rather than RRUP because it is conven-
ient (but not essential) for Δγ to be obtained at a magnitude-
independent set of distances. The conversion from RJB to RRUP

uses equation (12). This assumes a vertically dipping fault,
which was the assumption used in the Sea22 development
of the FAS model consistent with the CY14 GMPM.

RRUP �
������������������������
R2
JB � Z2

TOR

q
, �12�

with ZTOR (depth to top of rupture) being given by equation (5)
in CY14; ZTOR is a function of M, thus making the set of RRUP

determined from RJB dependent on M. For each period, there
are nSIM × nM × nR values of ΔγSIM, in which nSIM, nM , and nR
are the number of simulations, magnitudes, and distances,
respectively. In the Bea22 procedure, ΔγSIM was averaged over
distances from 30 to 100 km for each period, magnitude, and
simulation, and the mean and standard deviations of these
averages were computed over all the simulations. This distance
range was used because most of the probabilistic seismic haz-
ard for the target region used as an example in Bea22 came
from source-to-site distances less than 100 km. Figure 3d
shows the ΔγSIM and the average over distance used in Bea22,
for a period of 0.1 s and two magnitudes. The mean and stan-
dard deviations of Δγ were used to compute the logic-tree
branches, assuming a normal distribution for Δγ and using
the Miller and Rice approximation to the implied CDF.

Although ignored in Bea22, Figure 3d shows that Δγ is
dependent on distance. To study this in more detail, the sim-
ulations were extended to greater distances and more periods
than used in Bea22 (120 km and 0.1 s were used in Bea22). An
example of the Δγ adjustments from the new simulations are
shown in Figure 4. Plotted are the means over the 1000 sim-
ulations (ΔγSIM) for a set of distances, two magnitudes (4.5 and
7.5), and four oscillator periods (0.01, 0.1, 1.0, and 10.0 s).
There is a clear dependence of Δγ on distance for the
shorter-period response spectra. The path adjustment for
PSA is given by the exponentiation of Δγ multiplied by
RRUP (equation 9), so using an average Δγ of from 30 to
100 km instead of a distance-dependent value will lead to
differences in PSA that increase with distance. This might
not be a problem if the hazard is controlled by sources at short
distances, but if more distant sources are important, then a dis-
tance dependence should be included in Δγ. This can be done
using the procedure described in the next paragraphs.

Using the means and standard deviations over all simula-
tions of ΔγSIM at each set of periods, magnitudes, and distan-
ces, the values corresponding to the logic-tree branches are
computed using the procedure discussed earlier in this section.
The adjustments to γ are then a function of M, RRUP, B (the
logic-tree branch number), and T (the oscillator period) as
indicated in this notation: Δγ�M,RRUPjB,T�, although the B
and T dependence is assumed in the subsequent discussion and
not shown explicitly, with a few exceptions. Furthermore, for
simplicity the notation for Δγ is sometimes used without argu-
ments. In applications, these results could be expressed as a
table lookup of Δγ for a grid of M and RRUP, for each branch
and each period. However, this can be unwieldy, so a method
was devised to approximate the results, using a polynomial fit
ofΔγ versus distance for eachM, logic-tree branch, and period,
followed by a polynomial fit of the distance-regression coeffi-
cients as a function of M.

Based on plots such as shown in Figure 4, it was determined
that a subset of five distances (RJB � 30, 90, 150, 210, and
270 km for this example, shown by large symbols in Fig. 4)
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and a second-order polynomial (quadratic) could be used for the
fitting. A subset of distances is useful for computational effi-
ciency because then the Δγ for the logic-tree branches obtained
from a large number of simulated motions at each distance
needs to be computed for only a small fraction of the distances
that otherwise might be considered. The second-order polyno-
mial fit of Δγ versus distance is given by equation (13):

fΔγ�M,RRUP� � c0R�M� � c1R�M�RJB � c2R�M�R2
JB, �13�

in which c0R, c1R, and c2R are the regression coefficients for each
magnitudeM. As it is clear from Figure 4, this polynomial pro-
vides a good fit to the distance dependence of ΔγSIM using a
small subset of the points.

The next step in the process is to fit each of the coefficients
in equation (13) with a polynomial in M. Various functions
were tried; reasonable fits for a wide range of periods were
obtained using a third-order (cubic) polynomial. The results

are shown in Figure 5. There is more variation in the trends
of the distance-regression coefficients with magnitude than
there was for Δγ�M,RRUP� as a function of distance for a fixed
M (compare Figs. 4 and 5). The equations for the magnitude
dependence of the distance-regression coefficients are:
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Figure 3. Steps in deriving Δγ. (a) The Q functions for the host (CY14, from
the Sea22 inversion) and target (INL) regions, shown for two magnitudes.
(b) Simulated PSA as a function of distance for two magnitudes, using the
host- and target-region Q models (the rest of the parameters used in the
simulations were those for the host-region Fourier acceleration spectrum
[FAS] model given by Sea22). (c) The natural logarithm of the ratio of PSA
for the host (PSAH) and target (PSAT ) regions. (d) The adjustment factor
ΔγSIM for the path function FA, as computed from equation (11). The short
horizontal lines are the averages of ΔγSIM from 30 to 100 km, as used in
Bea22. The color version of this figure is available only in the electronic
edition.
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fc0R�M� � c0M0R � c1M0RM� c2M0RM2 � c3M0RM3, �14a�

fc1R�M� � c0M1R � c1M1RM� c2M1RM2 � c3M1RM3, �14b�

fc2R�M� � c0M2R � c1M2RM� c2M2RM2 � c3M2RM3: �14c�

Once the coefficients in equations (14a), (14b), and (14c)
have been determined (in the example in this article, 12 coef-
ficients for each logic-tree branch and period), the CY14 ane-
lastic attenuation path function for the target region is given by
the following equation:

FA � �γ� fΔγ�M,RRUPjB,T��RRUP, �15�

in which fΔγ�M,RRUPjB,T� is determined by first evaluating
equations (14a), (14b), and (14c) to obtain approximations
of the distance-regression coefficients (eciR, with i = 0, 1, and
2 for the example in this article) for a given M, and these
approximations for the distance coefficients are then used in
equation (13).

To check the procedure, Figure 6 compares fΔγ from the
approximate procedure (equations 13 and 14) withΔγ. It is clear
that fΔγ from the approximate procedure, based on distance-
and magnitude regressions, is in excellent agreement with Δγ.

Consequences of the modification
Although the distance dependence in the revised procedure to
determine Δγ can be inferred from Figure 6, the independent
ordinate-axis scaling for the graphs in the figure can distort the
importance of the dependence. For example, for a period of
1.0 s there appears to be a significant distance dependence,
but the absolute difference in Δγ from 30 to 270 km is close
to 0.0002 natural log units, which is a factor of 10 smaller than
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Figure 4. ΔγSIM, the adjustment to the CY14 anelastic attenuation parameter
γ, as a function of RJB for four periods (panels a–d), and two magnitudes. For
ease in comparing the magnitude and distance dependence for the different
periods, the ordinate-axes scales are the same for the four graphs. ΔγSIM is
the mean over all simulations ofΔγSIM for each magnitude and distance. The
large symbols show the subset of ΔγSIM used to derive the regression
coefficients for the revised γ adjustments discussed in this article, with the
quadratic fit to this subset shown by the lines. If missing, axis titles or labels
are those shown for labeled panels in the corresponding rows or columns. The
color version of this figure is available only in the electronic edition.
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the maximum difference for a period of 0.1 s. An easier way of
assessing the importance of the distance dependence in Δγ is
given in Figure 7, which shows Δγ as a function of magnitude
for one period (0.1 s) and three distances: 30, 58, and 100 km.
Δγ in the figure is for the middle branch of the logic tree, as
computed using the method described in the section immedi-
ately preceding this section. The distance-independent Δγ of
Bea22 (shown in Fig. 3d) is the same as for the RJB � 58 km
curve. If that curve had been used to compute the host-to-tar-
get adjustment to the anelastic path function for M 7.5 and for
a site at 100 km, Figure 7 shows that the host-to-target adjust-
ment to γ would have been too low by 0.00035 natural log
units. This is equivalent to a factor of exp�0:00035 × 100� �
1:036 in the ratio of the GMIM at 100 km computed using
the previous and revised host-to-target adjustment to the ane-
lastic attenuation path function.

Although Figure 7 is informative, a more direct view of the
consequences of the revised host-to-target adjustment to the

anelastic attenuation path function is to show the ratio of
the GMIM Y for the previous and revised procedures for
obtaining the adjustment. Let YH and YT be the portions of
the GMIMs for the host and the target regions that are attrib-
utable to the anelastic attenuation path function. Then from
equations (1) and (15), the multiplicative factor χFA that con-
verts YH to YT is given by the following equation:
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χFA
� YT

YH
� exp�fΔγRRUP�: �16�

Figure 8 shows χFA
plotted against RRUP for four periods,

including the extreme periods used in CY14 (0.01 and
10.0 s). The results are shown for one magnitude (7.0) and
the lowest, middle, and highest logic-tree branches (B = 1,
3, and 5). The results for other magnitudes, ranging from
4.5 to 8.0, are similar in appearance. The results are shown
both for the Bea22 (distance-independent, as given using
Δγ at 58 km) and the revised (distance-dependent) adjust-
ments to γ. Consistent with the example discussed in the pre-
vious paragraph, the differences using the two ways of
computing the adjustment are relatively minor for distances
within about 100 km. The differences are also minor for longer
periods at all distances, but they can be substantial for short
periods, with the importance growing with distance. For exam-
ple, for a period of 0.1 s at 300 km, YT from the revised Δγ

would be a factor of 2.0 times larger than if it had been com-
puted using the Bea22 procedure to determine Δγ. The adjust-
ments are negative for all periods but 10 s. This is consistent
with the Q values shown in Figure 3a, which result in the tar-
get-region attenuation being greater than the host-region
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Figure 6. The anelastic attenuation adjustment parameter Δγ for the middle
branch of the logic tree, from the simulations (Δγ, given by the symbols)
and from the combination of fitting the simulations with a regression over
distance, followed by a regression of the distance-regression coefficients
over magnitude (fΔγ, given by the lines). The comparison is shown as a
function of magnitude for four oscillator periods and five distances. The
ordinate-axis scales are chosen separately for each plot; the range of Δγ is
wider for the short periods ((a) 0.01 and (b) 0.1 s) than it is for the longer
periods ((c) 1.0 and (d) 10 s). If missing, axis titles or labels are those shown
for labeled panels in the corresponding rows or columns. The color version
of this figure is available only in the electronic edition.
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attenuation except for frequencies less than about 0.5 Hz and
M 7.5 (although not shown in Figure 3a, the Q values for M
greater than about 6.5 are almost identical to those for M 7.5).
The negative Δγ adjustments lead to the target-region PSA
being less than the host-region PSA, except for the oscillator
responses at long periods.

DISCUSSION AND CONCLUSIONS
Bea22 discusses a number of host-to-target adjustments to a
backbone GMPM used to compute seismic hazard in regions
other than those from which the backbone model was derived.
This article discusses modifications to two of those adjust-
ments—for the earthquake source function and for the anelas-
tic path function. For the source adjustment, a procedure to
produce the CDF of the adjustment parameter ΔcM is given
that assumes uncorrelated host- and target-region stress
parameters (implicit in the Bea22 procedure is that the stress
parameters are perfectly correlated); the logic-tree branches for
ΔcM can be computed from the CDF. In the example used in
Bea22, the uncertainty in the logarithm of the host-region
stress parameter is so small (0.031) compared with that for
the target region (0.233), that there is little change in the
ΔcM logic-tree branches when the modification in this article
is used. But for situations in which the host-region stress
parameter has a larger uncertainty, there can be a significant
difference in the ΔcM adjustment for all but the middle branch
of the logic tree. It is my opinion that in most, if not all, appli-
cations, Δσ for the host and target regions will be uncorrelated.

The other modification is to the Bea22 host-to-target
adjustment Δγ used in the CY14 anelastic attenuation path
function. In Bea22, the adjustment used an average of simu-
lations of the Δγ adjustments over a range of distances from
30 to 100 km. Even though some variation with distance was

observed in the simulations ofΔγ, this variation was ignored in
the Bea22 procedure for computing the adjustment. Inspection
of the simulations for short-period motions, however, finds a
clear dependence of Δγ with distance. This article proposes a
procedure to include the distance dependence of Δγ. For a
given period and logic-tree branch, the procedure uses regres-
sion fits to the distance dependence and the magnitude
dependence of the simulated Δγ over a grid of distance and
magnitude values. This results in a convenient approximation
of the distance and magnitude dependence of Δγ given by 12
regression coefficients for a given logic-tree branch and period.
The result is denoted fΔγ�M,RRUPjB,T�, with the tilde used
to indicate that the computed values are an approximation
to the simulated values of Δγ. The approximated values are
very close to the simulated values when compared over a wide
range of magnitudes and distances. Comparisons of the
host-to-target adjustments from the distance-independent
and the distance-dependent Δγ finds minor differences for
longer periods (1.0 and 10 s in this article) at all distances
and for shorter periods (0.01 and 0.1 s in this article) for dis-
tances less than about 100 km. This distance is only an
approximation because the difference gradually increases with
distance, becoming quite important for shorter periods at dis-
tances of hundreds of kilometers, where the ratio of GMIM
computed using the revised and previous γ adjustments can
exceed a factor of 2.

Both of the modifications to Bea22 discussed in this article
used the FAS model for the CY14 host-region GMPM devel-
oped by Sea22, but the procedure can be adapted for use with
other FAS models.

To close, I include here a few comments on the distance
dependence of Δγ. That there is a dependence might come
as a surprise at first glance. The only differences in the FAS
models for the host and target regions are the Q values.
Because Q enters the FAS model as

FAS ∝ exp

�
−
πf RRUP

QcQ

�
, �17�

in which cQ is an average shear-wave velocity used in the der-
ivation of Q from observations, RRUP cancels out of the equa-
tion for Δγ if the FAS model is used in equation (11) instead of
the PSA values. That there is an RRUP dependence to Δγ is
related to response spectral values for a given oscillator period
generally being determined by a range of frequencies in the
Fourier spectra, as discussed, for example, by Bora et al.
(2016) and Dujardin et al. (2016). This dependence can be dif-
ficult to predict simply by looking at plots of FAS, but some
appreciation of the issue can be obtained from Figure 9, which
shows a FAS model made up of the following contributions: a
single-corner frequency ω2 source model (S), a Q function (D,
given by equation 17), a diminution function (D � exp�−πκ0f �,
in which k0 � 0:039 s), and a 5% damped oscillator response
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3) for three values of RJB. Although not shown to avoid clutter in the figure,
the relative differences in Δγ for the three distances is similar for the other
logic-tree branches. The color version of this figure is available only in the
electronic edition.
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with natural frequency given in the abscissa (O). Plotted is the
square of the FAS as a function of linear frequency because it is
this that is used in computing the spectral moments used in the
random vibration theory for determining the value of the
response spectral amplitudes (e.g., Boore, 2003). Figure 9
shows the combined FAS for two periods, 0.1 and 10.0 s, for
two distances (20 and 100 km), and two regions (host and tar-
get). Recall that the only difference in the FAS models for the
two regions in the derivation of Δγ is in the Q values. The FAS
for the short-period oscillator clearly has different shapes for
the four curves, and because the PSA values come from inte-
grals of the curves over frequency, it is not surprising that the
ratios of host-to-target response spectra will be different for the
two distances. This results in a distance dependence for Δγ.
Here, the Q differences between the host- and target regions
have a major influence on what is expected from Fourier versus
response spectra, a point made by Dujardin et al. (2016). On
the other hand, the FAS models for the long-period oscillator
responses are much more similar in shape than for the short-
period oscillator responses (as pointed out by Bora et al., 2016),
and therefore the results of using either FAS or the PSA values

in equation (11) should be similar, with much less distance
dependence for Δγ than for shorter periods, consistent with
what is shown in Figure 8.
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Figure 8. The multiplicative factor χFA � expΔFA, in which ΔFA � fΔγRRUP
(see equations 15 and 16) for four periods (panels a–d), including the shortest
(0.01 s) and longest (10.0 s) response spectral periods used in CY14. This factor
converts the part of the host-region ground-motion intensity measure (GMIM)
due to FA (as given by exp γRRUP) to the target region. χFA is plotted versus RRUP
for two periods, one magnitude, and the lowest, middle, and highest logic-tree
branches (B = 1, 3, and 5). χFA was computed using both the revised, distance-
dependent Δγ and a distance-independent Δγ given by evaluating the revised
Δγ at RJB � 58 km. The ordinate-axis scales are the same for all graphs, to
allow a better comparison of the adjustments for different periods. Note that the
total path function in the CY14 ground-motion prediction model (GMPM)
includes geometrical spreading and γRRUP (equation 9); the contributions to the
GMIM due to these functions are not shown in this figure, which is only
concerned with the consequences of different ways of computing the host-to-
target adjustments in the anelastic attenuation path function. If missing, axis
titles or labels are those shown for labeled panels in the corresponding rows or
columns. The color version of this figure is available only in the electronic edition.
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DATA AND RESOURCES
The figures were prepared using CoPlot available at www
.cohortsoftware.com. Most of the analysis used scripts written in
the statistical language and environment R (R Core Team, 2022) avail-
able at https://www.r-project.org/. All websites were last accessed in
September 2023.
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