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SHORT-PERIOD P- AND S-WAVE RADIATION FROM LARGE 
EARTHQUAKES: IMPLICATIONS FOR SPECTRAL SCALING 

RELATIONS 

BY DAVID M. BOORE 

ABSTRACT 

Recent measurements of peak P-wave amplitudes on World Wide Standardized 
Seismographic Network short-period instruments by Houston and Kanamori 
(1986) provided the opportunity to investigate source radiation from great earth- 
quakes at higher frequencies than have previously been available. The depend- 
ence on moment magnitude (M) of the amplitude measurements (A) and the 
dominant period (T) in the P-wave seismograms are compared to predictions 
from several source-scaling relations. For all of the relations, the radiated energy 
was assumed to be randomly distributed over a duration proportional to the 
inverse corner frequency. An w-square source-scaling relation with a constant 
stress parameter of 50 bars gives a good fit to both observed quantities (A and 
T) for earthquakes up to M 9.5. This model, with the same stress parameter, also 
fits peak acceleration and peak velocity data for earthquakes with moment 
magnitude as low as 0.5. Predictions using the source spectra derived by Gusev 
(1983), which are representative of several published relations featuring regions 
of reduced spectral decay after an initial ~-2 attenuation beyond the corner 
frequency, do not fit the various high-frequency observations quite as well as do 
those using the ~-square model, although the differences between the predicted 
motions are generally within a factor of 2 to 3. Although the w-square model 
successfully predicts a wide variety of time-domain measures over an extraor- 
dinary magnitude range, it fails to fit the Ms, M correlation for large earthquakes; 
Gusev's spectral scaling relation, on the other hand, fits this correlation, but was 
constrained in advance to do so. This failure of the w-square model is of little 
practical concern, occurring as it does at periods longer than those of usual 
engineering importance. An ~-cube model fails completely to explain the seismic 
moment dependence of the observations. 

INTRODUCTION 

Although crucial for many engineering designs of critical structures, knowledge 
of the high-frequency radiation from large and great earthquakes is hampered by 
the lack of suitable recordings of such events at distances for which significant 
damage can occur (within 100 to 200 km). Because of the long recurrence times of 
large earthquakes and their generally inaccessible locations, it may be years before 
such records are collected. Lacking records, seismic design criteria are often based 
on extrapolations from the existing data base--extrapolations that can be guided 
by theoretical predictions based on seismic scaling laws. One such scaling law that 
has proven to give good predictions of strong ground motion at close distances is 
the stochastic, w-square, constant-stress-parameter model (Hanks, 1979; McGuire 
and Hanks, 1980; Hanks and McGuire, 1981; Boore, 1983; McGuire et al., 1984; 
Atkinson, 1984). Does this model also work for great earthquakes? Are other scaling 
laws comparable or better? To answer these questions, it is natural to turn to short- 
period recordings of great earthquakes at teleseismic distances. 

Although recent improvements in digital seismometry have made possible the 
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direct estimation of body-wave spectra at short periods (e.g., Houston and Kana- 
mori, 1986), there are few large and great earthquakes for which adequate records 
are available. Because of this limitation, most of the existing scaling laws are based 
in one way or another on relations between various magnitude measures (usually 
rnb and Ms) and seismic moment. The teleseismic magnitude most directly related 
to the frequencies of engineering interest is the body-wave magnitude rnb. There 
are two problems connected with using published mb's to investigate scaling laws: 
the first is that the standard mb published by the National Earthquake Information 
Service (NEIS) or the International Seismological Centre (ISC) is largely deter- 
mined from amplitudes in the first several cycles of motion. The resulting rnb for 
large earthquakes may not contain any information about the overall radiation of 
short-period waves. The second problem is the technical one of relating a peak 
motion in the time domain to a spectral amplitude. As pointed out by Hanks (1979), 
if the duration of the body-wave phase on the seismogram is controlled by the 
source duration, then the peak time-domain amplitude is not simply proportional 
to the spectral amplitude at the predominant frequency of the seismogram. This 
has been recognized and accounted for by some authors of scaling laws (e.g., Aki, 
1967; Gusev, 1983) but apparently not by others (Geller, 1976; Nuttli, 1983a,b, 
1985). The problem of mb not being representative of the overall source radiation 
can be overcome by using measurements of the maximum amplitude of the P wave 
on short-period recorders (Koyama and Zheng, 1985; Houston and Kanamori, 1986). 
I have resolved the problem of relating time- and frequency-domain amplitudes by 
using random vibration theory (with time-domain simulation as a check) for 
predictions of the peak time-domain seismograph response for various spectral 
scaling relations. 

DATA 

Houston and Kanamori (1986) studied the short-period radiation of large earth- 
quakes using teleseismic recordings of 19 moderate to great earthquakes. Although 
of less engineering significance than S waves, Houston and Kanamori chose to 
study P waves because they are little contaminated by later phases and even for 
great earthquakes are often recorded at teleseismic distances without saturating on 
conventional analog short-period instruments. For all but one of the 19 events 
studied, Houston and Kanamori used 8 to 27 records from WWSSN short-period 
stations at distances of 30 ° to 100 ° . For the 1960 Chilean event, records from short- 
period Benioff, Wood-Anderson, Milne-Shaw, and short-period Willmore seismo- 
graphs were used. The measurements of maximum amplitude in the P-wave train 
were converted into an effective body-wave magnitude, rhb, using the same formula 
from which conventional mb magnitudes are derived. A plot of rhb as a function of 
moment magnitude, M (Kanamori, 1977; Hanks and Kanamori, 1979), is given in 
Figure 1. For reference, a plot of mb versus M for earthquakes with focal depths less 
than 70 km has also been included in part b of the figure. The mb values were taken 
from the International Seismological Centre Bulletin, if available, and the Prelimi- 
nary Determination of Epicenters, National Earthquake Information Service 
(NEIS), if not. The moments were compiled from five sources, as given in the 
legend. Approximate bounding lines have been drawn on the mb - M plot, and 
these have been included in the rhb plot (part a of the figure). The first point to 
make is that, contrary to widespread expectations, on-scale recordings of short- 
period radiation from great earthquakes are readily available (although not easily 
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analyzable). Besides providing direct information about the radiation, these data 
give important constraints for modeling great earthquakes. The second, and most 
important, point is that rhb shows no indication of saturation with earthquake size, 
as is commonly ascribed to mb. The difference in mb and thb is that in practice many 
of the amplitudes used in determining the former are measured from only the first 
few cycles of the P-wave motion. Not being a true measure of the maximum P-wave 
motion, mb gives a misleading impression of the scaling of P-wave motion with 
source size. Current recommendations of the International Association of Seismol- 
ogy and Physics of the Earth's Interior for measuring peak amplitudes (and current 
in-house procedures of the NEIS) will help alleviate this for all but the largest 
earthquakes (Willmore, 1979; B. W. Presgrave, oral communication, 1984). 

The period (T) measured by Houston and Kanamori is their estimate of the 
dominant period in the vicinity of the peak motion; it is measured from adjacent 
peaks on the seismogram. On the other hand, the random vibration theory used to 
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FIG. 1. Dependence of short-period P-wave magnitude on moment magnitude (M). (a) rhb versus M. 
Errors bars are 95 per cent confidence limits. Data from Houston and Kanamori (1986) and H. Houston 
(written communication, 1984). Lines are approximate bounds of mb, M relation, fit to the data by eye. 
(b) mb versus Mtaken from several sources, with same bounding lines as in (a). Source depths less than 
70 km. (Squares) Dziewonski and Woodhouse {1983), Dziewonski et al. (1983); (X) Geller (1976); 
(diamonds) Silver and Jordan (1983); (triangles) Furumoto and Nakanishi (1983). 

compute theoretical estimates of T predicts the period that would be measured from 
the frequency of crossings of the seismogram's zero line. These two estimates of 
period can be different. Measurements on a subset of the seismograms used by 
Houston and Kanamori (corresponding to 22 of the best recordings from 5 of the 
earthquakes) indicated little relation between the two period measures (Figure 2). 
On average, the periods determined from crossings of the baseline are 0.4 sec lower 
than those measured from the distance between peaks, and there is less scatter in 
the former period measure. Because it is more closely related to the quantity 
predicted by theory, the average zero-crossing period (1.4 sec) is used as the 
observational quantity against which the predicted values will be compared. For the 
larger earthquakes, little or no dependence of period on moment magnitude was 
observed by Houston and Kanamori or predicted by theory. 

The formula from which magnitude is defined includes period explicitly in the 
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divisor of the observed amplitude and implicitly in the correction for ins t rument  
response. Because of the difference in the period measure used by Houston and 
Kanamori  and that  compfited with the simulation method, I decided that  it would 
be more consistent to compare the theoretical predictions with the observed seis- 
mogram amplitudes, before they were reduced to magnitudes. To do this, measure- 
ments  provided by H. Houston  (written communicat ion,  1984) were normalized to 
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FIG. 2. Periods measured by H. Houston from peaks adjacent to maximum (T~) and by D. Boore 
from zero crossing (Tzc), for a subset of earthquake/station pairs used by Houston and Kanamori (1986). 

TABLE 1 
WWSSN SEISMOGRAM AMPLITUDES REDUCED TO 70 ° and Gain of 10,000 

Earthquake* log 10 t A/Gt 95% Confidence Limits No. of Stations 

1 O.49 +_0.11 19 
2 0.15 +0.17 17 
3 0.11 +_0.13 20 
4 0.30 +_0.30 8 
5 0.10 +-0.11 27 
6 -0.21 ___0.13 9 
7 -0.20 +-0.14 16 
8 0.05 +0.10 16 
9 -0.17 _+0.15 17 

10 -0.31 +-0.13 20 
11 -0.38 ___0.15 17 
12 -0.43 ___0.16 18 
13 -0.31 +-0.09 21 
14 -0.42 --0.12 17 
15 -0.56 +0.12 17 
16 -0.69 ___0.12 22 
17 -0.59 +-0.09 26 
18 -1.17 +0.09 19 

* Corresponds to Houston and Kanamori (1986) numbering. 
f Units of A are in centimeters. 

a gain of 10,000, and the logarithms of the normalized amplitudes were reduced to 
a distance of 70 °. The resulting measure of seismogram amplitude will be referred 
to as "A" from here on. The reduction to a common distance used the s tandard 
Gutenberg-Richter  correction function (e.g., Richter, 1958, p. 688). The measured 
periods showed no dependence on distance, thus justifying the use of the correction 
function for the log of the seismogram amplitudes rather than  the log of amplitudes 
divided by period. The values of A are given in Table 1. 
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SIMULATION OF A AND T: METHOD 

The A, T data should put some constraints on the short-period seismic radiation. 
To study this quantitatively, I constructed theoretical A and T for several spectral 
scaling relations. The procedure for doing this was straightforward: the source 
spectrum for an event of given moment magnitude was corrected for geometric 
spreading and anelastic attenuation and then multiplied by the WWSSN short- 
period instrument response. Random vibration theory (e.g., Boore, 1983, p. 1884), 
which uses various spectral moments of the resulting instrumental spectrum, 
provided estimates of the characteristic period and the peak amplitude. This 
procedure differed in several essential ways from that used in many scaling studies: 
the assumption that rhb(or, equivalently, the peak amplitude of the seismogram) is 
proportional to the log of the spectral amplitude at a particular frequency was 
avoided, and absolute values of A were predicted (rather than relative values that 
are tied to a particular rhb, M pair by an empirically determined additive constant). 

The emphasis in this research was on testing several well-known models for their 
consistency with the average trends defined by the observations; detailed predictions 
of observed quantities for particular events were not attempted, nor were attempts 
made to optimize the fit of any model to all the data. Because observations of A 
and T were made from various azimuths for any one event and for events with 
various focal depths (down to 70 km) and many varieties of tectonic regimes, a 
simple point source in a uniform medium was chosen as the basis of the theoretical 
calculations; source directivity is generally negligible for teleseismic P waves and 
was ignored. With these assumptions, the equation used to estimate the record 
spectrum R (f) is 

R([ )  = C g(A___~) S ( [ ) D ( / ) Z ( f ) I ( / ) ,  (1) 
r 

where the symbols C, S, D, Z, and I stand for a scaling factor, the spectrum of 
moment-rate, a diminution factor, an amplification factor, and the instrument 
response, respectively. Only S depends on the seismic moment; it is discussed in 
detail in a later section, g(A) is a geometrical spreading factor, and r is the radius 
of the Earth (for predictions at teleseismic distances). C is given by 

Ro4~. F 
C -  4~p,c  3 , (2) 

where Roy is a radiation coefficient, F is the free surface amplification, and ps and 
c~ are the density and the wave velocity in the vicinity of the source. Values for 
some of the constants used in this paper are given in Table 2. 

In previous analyses (e.g., Boore, 1983; Hanks and Boore, 1984), no effort was 
made to account for the amplification of waves as they travel upward through rocks 
whose velocities generally decrease as the Earth's surface is approached. For the 
periods contained in teleseismic recordings of P waves and WWSSN short-period 
instruments sited on rock, this amplification is not great. For close-in, rock record- 
ings of S waves, however, the amplification can be greater than a factor of 2, 
especially as frequencies increase beyond 1 Hz. This is true even in the absence of 
strong impedance contrasts. For the sake of completeness in describing the model, 
an amplification correction is discussed here although its major importance is not 
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encountered until the later section dealing with strong-motion simulations. A first- 
order way of accounting for the amplification effect is to use energy conservation 
in a ray tube passing through media of slowly changing velocity. Although such a 
correction is included in the equation from which g(A) is derived, the very near- 
surface material properties of importance to short-period waves usually are not 
considered in numerical evaluations ofg(A) [such as those of Kanamori and Stewart 
(1976), from which g(A) in Table 2 was taken]. The additional correction needed 
to account for propagation from the average crustal depths assumed in evaluating 
g(A) up to the surface can be approximated by 

Z ( f )  = ~/poCo/prCr, (3) 

where the subscripts o and r stand for material properties in average crustal material 
and near the receiver, respectively (Aki and Richards, 1980, p. 116). A frequency 
dependence to this correction factor follows by interpreting the receiver properties 
as being averaged over a depth corresponding to a quarter-wavelength (Joyner and 
Fumal, 1984). Specific corrections for applications in this paper were obtained by 
constructing smooth P and S velocity-depth profiles, for rock, constrained by near- 

TABLE 2 

MODEL PARAMETERS 

Teleseismic P Near-Source and 
Parameter Waves Regional S Waves 

6.8 km/sec Not needed 
fl 3.9 km/sec 3.2 km/sec 
p 3.0 gm/cm 3 2.7 gm/cm ~ 
g(A) 0.32 1.0 
F 1.9 2.0 
Ro~ 0.45-0.78 0.55 
r 6371 km 10 km 

surface velocities (Fumal, 1978) and standard crustal velocities. The depth depend- 
ence of the velocities are not well determined from the data. They were sketched 
in, guided by the P~ intercept times of 0.5 to 0.75 sec (J. Eaton and D. Stauber, oral 
communication, 1984), crack closure experiments of Nut  and Simmons (1969), and 
the frequency dependence of Joyner and Fumal's Vo values. I assumed that standard 
upper crustal velocities were reached by a depth of 1.5 km. The variations in density 
are expected to be relatively minor in rock and thus were ignored. The logarithms 
of the correction factor for several frequencies are given in Table 3. Evaluation at 
other frequencies was done using linear interpolation. 

The diminution function accounts for attenuation of the waves between the 
source and the receiver. The function combines a near-site attenuation function P, 
discussed in a later section [equations (13) and (14)], and a standard t* operator 

D([ )  = e x p [ - r t * ( / ) f ] P ( [ ) .  (4) 

The frequency dependence of t*, given by 

= {:  - 0.27 log(f/0.13) t* 
[ _-_ 0.13 Hz 
f > 0.13 Hz 

(5) 
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where a is an arbitrary constant, approximates that of the preferred QP model of 
Der and Lees (1985). [Values of A and T calculated from a model with a constant 
t* equal to that from equation (5) at a 1.4 sec period differed from results using the 
frequency-dependent t* by less than 0.1 log units and 0.14 sec, respectively, for 
moment magnitudes ranging from 5.0 to 9.5.] 

By assuming that the spectral energy given by equation (1) is spread out over a 
duration ~ on the seismogram, random vibration theory (as summarized, e.g., by 
Boore, 1983) provides a convenient and quick way of estimating the peak motion 
and the dominant period. The theory uses various weighted integrals of the squared 
seismograph spectra R( f ) .  These integrals, sometimes referred to as "spectral 
moments," are defined by the general relation 

f 0  ~ 
mk = 2 ( 2 ~ f ) a l R ( f ) l  2 d[ (6) 

for the kth spectral moment. The simplest random vibration theory uses m0 and 
m2. For example, from Parseval's theorem, the rms of the seismograph response is 

TABLE 3 

AMPLIFICATION FACTORS 

log f log ~'~a~ l o g ~  Gusev (1983) 

- 1  0.01 0.01 0.0 
-0.5 0.04 0.04 0.12 

0.0 0.13 0.13 0.25 
0.5 0.17 0.34 0.30 
1.0 0.19 0.37 0.30 

given by 

rrms = (mo / ' r )  112. (7) 

Less familiar, perhaps, is the following estimate for the dominant period 

T = 2r(mo/m2) 1/2 (8) 

(e.g., Newland, 1975, pp. 92-94). Once the dominant period and the rms of the 
motion have been found, random vibration theory can be used to estimate the 
maximum amplitude in a record of length T. The simplest expression for doing this 
is 

rmax -~ [2 ln(2r/T)]l/2r~.~. (9) 

Equation (9) is an approximation that is good for large values of 2r/T.  Although 
this approximation is adequate for most of the events of interest here, the more 
exact expressions given by Boore (1983) were used in this paper. 

The duration r was assumed to be related to the inverse of a source corner 
frequency [for some applications--such as simulations of mLg--the duration might 
be controlled by the geologic structure rather than the source (Herrmann, 1985)]. 
For moderate earthquakes (M - 5 to 6) with focal depths greater than about 5 to 
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10 km, the WWSSN short-period instrument response to the direct P wave will not 
overlap with the response to the depth phases. In this case, the duration ~ was 
taken as the inverse of the source corner frequency, and the radiation coefficient 
Ro¢ was given by an average of the direct P-wave radiation pattern over all azimuths 
and over a range of takeoff angles appropriate for the suite of observations (Boore 
and Boatwright, 1984). For earthquakes greater than about M 8.0 at shallow depths 
(h ~ 15 km), the source duration will be significantly longer than the time interval 
between the direct- and depth-phase arrivals. To account for the interaction of the 
various phases, an average radiation coefficient was computed by assuming that the 
time series of the various phases add incoherently at the frequencies of interest (~1 
Hz). Averaging and summing the appropriately weighted radiation patterns for each 
phase over all azimuths and the appropriate range of takeoff angles led to an 
effective Ro~ (Boore and Boatwright, 1984). The effective duration r was increased 
by an additive constant equal to a representative time interval between direct and 
depth phases (7 sec). For this paper, Ro,  = 0.45 for direct P waves and Ro,  -- 0.78 
for direct P plus pP and sP. These coefficients are appropriate for dipping thrust 
or normal faults; the coefficients for strike-slip earthquakes would be considerably 
smaller. The radiation coefficients and the durations for earthquakes with magni- 
tudes between M 6 and M 8 were determined by interpolation. 

The random vibration method is a convenient and computationally simple and 
rapid way of relating time-domain peak motions and spectral-domain amplitudes. 
For small earthquakes, however, the source process time is comparable to the 
instrument free-period, and the expected seismograph output has a decidedly 
nonrandom appearance. It is not clear a priori that random vibration theory can be 
used in such circumstances. The use of random vibration theory was verified, 
however, for earthquakes down to M = 5 by deriving the average A and T from a 
suite of 25 time-domain simulations for a given moment magnitude, following the 
methods of Boore (1983). 

SCALING RELATIONS FOR SOURCE SPECTRA 

For detailed comparison with the data, I have chosen four representative spectral 
scaling relations, out of the many that have been proposed. Three of the relations 
are given by models in which the spectral corners scale as Mo -I/3 and the high- 
frequency portions of the spectra are proportional to w -15, w -2°, and w -3°. The 
fourth scaling relation is given by the empirical suite of spectra determined by 
Gusev (1983) in which S(w) for large earthquakes has a region of w -1 decay after an 
initial w -2 falloff. Most attention in this paper will be focused on the Gusev suite 
of spectra and the source spectra determined from the w-square model. 

The w-square model used here corresponds to a modification by Joyner (1984) 
of the models of Aki (1967) and Brune (1970, 1971). Joyner's model allows for the 
breakdown of the similarity characterizing previous w-square models; it uses two 
corner frequencies, the higher frequency one being pinned as the size of the 
earthquakes passes a specified critical moment magnitude (possibly corresponding 
to an event that breaks through the seismogenic part of the lithosphere). For events 
smaller than the critical size, the corners both scale in a self-similar fashion. 
Because the large earthquakes considered by Houston and Kanamori (1986) corre- 
spond to subduction zone events, I have assumed that the critical size earthquake 
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was never reached• The moment rate function is given by I[ l r '  
Mo 1 + (f/fB)2J f <= f~ 

Mo ~-+ (///BFJ \ f ]  f > IA 

(lOa) 

(lOb) 

Following Joyner (1984), fs was set equal to 4[A. This leads to the following 
expression for fA 

[~ = 3.5 x 106fl(A~/Mo) 1/3, (11) 

where fl is the shear velocity in kilometers/second, Aa is a scaling parameter having 
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Fro. 3. Source spectra (S) for earthquakes of moment 102~ and 1029 dyne-cm, modified from Aki 

(1983). (Solid lines) Gusev (1983); (dashed lines) Aki (1972) model B; (dotted line) Koyama et al. (1982). 

the dimensions of stress (in units of bars), and the units of moment are dyne-cm. I 
used equation (11) for P-wave spectra, implying no corner frequency shift between 
P and S waves. Because the corner frequencies are lower than the instrumental 
frequency for all but the smallest earthquakes considered here, the effect of a corner 
frequency shift can be absorbed into a change in Az. 

The refinements incorporated in Joyner's model are not necessary in this study; 
simulations with a straightforward, single-corner-frequency w-square model (such 
as used in Boore, 1983) generally differed from those .predicted by Joyner's model 
by less than 0.07 log units for logA and 0.1 sec for T. I have kept the Joyner model 
because it is more flexible and is only slightly more complicated. 

Several recent modifications of the ~o-square model have introduced a segment of 
less rapid decay in a portion of the high-frequency part of the spectrum, at least for 
large events. Figure 3 shows representative spectra from three such studies, by Aki 
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(1972), Koyama et  al. (1982), and Gusev {1983). As discussed in some detail later, 
the main difference between Gusev's spectra and those from the w-square model 
arises because of the latter's inability to match the observed M s ,  M relation for 
large earthquakes; Gusev constrained his spectra to do so. Aki (1972) and Koyama 
et  al. (1982), on the other hand, modified the w-square spectra because they thought 
the w-square model failed to reproduce the relation between magnitudes determined 
from surface waves ( M s )  and short-period body waves (mb and MjM~ for Aki and 
Koyama et  al., respectively). In Aki's case, the failure to match the M s  - mb 

systematics appears to be a consequence of his constraint that M s  = mb at magnitude 
6.75, rather than a fundamental flaw in the model. Although this constraint is a 
definition used by Gutenberg and Richter in setting up their magnitude scales, it 
does not apply to modern mb's determined from, narrow-band, short-period instru- 
ments. It is well known that the body-wave magnitudes determined by Gutenberg 
and Richter  (mB) are measur, ed from broadband instruments and correspond to 
waves with longer period motions; they are consistently higher than the mb estimates 
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FIG. 4. Correlation of surface-wave magnitude (Msi and body-wave magnitude (mb). Data from 
sources in Figure 1 legend. {Solid lines) Aki's unmodified w-square model (Aki, 1967), as given in Aki 
{1972, Figure 8); {dashed lines) include a correction for source duration. (Rightmost lines) Aki's original 
curves, constrained to pass through the Ms, mb point (6.75, 6.75); (leftmost curves) the rightmost curves 
shifted according to Abe's correlation between mB and mb (see text). 

reported by the NEIS and ISC [Abe (1981), who finds that mb = 6.0 corresponds to 
the broadband m s  = 6.75]. The mismatch of the observations and Aki's original 
model is illustrated in Figure 4. The right curve is for the w-square model with and 
without a correction for source duration, as given in Aki (1972, Figure 8). Clearly, 
requiring the curve to pass through the point M s  = mb = 6.75 is inappropriate. 
Shifting the curve to the left by Abe's correction factor of 0.75 results in a good fit 
to the data, especially if the saturation of mb is kept in mind (see Figure 1). The 
modifications of the w-square model by Koyama et  al. were similar in spirit to Aki's, 
but their constraint that the theoretical predictions go through M s  = MJMA = 7.0 
is consistent with observations. Because a broadband instrument was used, however, 
I have some reservations about their assumption that MJMA is proportional to the 
log of the spectral amplitude at a fixed frequency. 

Whether or not the modifications to the w-square are well-founded, the fact 
remains that a number of recently proposed suites of source spectra exhibit a portion 
going as approximately ¢o -1 after an initial w -2 decay. I have used Gusev's proposed 
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spectra for detailed comparisons with data in this paper, and in keeping with the 
explicit treatment of the wave amplification due to velocity decreases near the 
earth's surface, I have used his source spectra (which he obtained by deconvolution 
of the spectra inferred from surface observations) rather than his surface spectra. 
These spectra, presented only in graphical form, were digitized. Spline interpolations 
and numerical integration provided the spectral moments needed in the random 
vibration theory to predict the observational parameters. Comparison of f 2 S ( f )  
(proportional to ground acceleration spectra in the absence of attenuation) for 
Gusev's spectra and those from the w-square model with a 50 bar stress parameter 
are shown in Figure 5. The two sets of spectra are similar in the 1 to 10-Hz range 
for M0 > 1026 dyne-cm but  differ radically at longer periods for large earthquakes. 
Based on this comparison, I would expect that the Ms - Mo relations for the two 
models would show larger differences than would the predicted peak accelerations 
and velocities at close distances and log A values at teleseismic distances. This is 
indeed the case, as is shown later. In view of the comparison of the two models in 
Figure 5, it may be more appropriate to say that Gusev's spectra has a "sag" rather 
than a "bump" (as is commonly done). 
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FIG. 5. Source spectra ([2S) for earthquakes with moments of 1024, 1026, 1028, and 1030 dyne-cm. 
(Lines) Gusev (1983) source spectra; (squares) Joyner (1984), with stress parameter of 50 bars. 

Two other models, with high-frequency spectral decays that are more and less 
rapid than in the w-square model, were constructed by suitable modification of 
Joyner's model. In the first, the exponent 3/2 in equation (10b) was replaced by 1, 
resulting in a spectral behavior of w -''5 at high frequencies. This model was 
motivated by Hartzell and Heaton's (1985) finding of an average spectral decay of 
w -15 in the 0.02- to 0.4-Hz frequency band (assuming t* = 1.0) from an analysis of 
analog records from 63 earthquakes recorded on a single instrument. The second 
model has a high-frequency behavior of w -3"°. This w-cube model was obtained by 
replacing the exponent 3/2 equation (10b) by 5/2. Geller (1976), Evernden {1977), 
and Frasier and North (1978), among others, have either proposed such w-cube 
models or given observational support for an w -3 spectral decay. It is possible to 
choose values of t* such that both an w -2 and an w -3 source model will have similar 
spectral shapes over a limited frequency band, and therefore it is not possible to 
discriminate between source models on the basis of observed decay alone so long as 
t* is a free parameter. For example, Evernden (1977) used an attenuation equivalent 
to t* = 0.26 in reaching the conclusion that observed spectra agreed with an w -3 
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decay. On the other hand, t* around 0.8 (at the dominant period of the seismogram) 
seems to be required for the ~-2 model. The scaling of log A with moment is not 
subject to the same tradeoff between attenuation and spectral decay and therefore 
should better discriminate between models than does observed spectral shape. This 
is in essence what Frasier and North (1978) attempted by comparing mb and 
dominant period T [their data set, however, was for a small range of mb (4 < mb< 
5) and extrapolation of their m~, T correlation to larger magnitudes is inconsistent 
with the data in Figures 1 and 2]. 

For all the spectral models, the record duration T for the direct P wave was taken 
to be lirA, which is supported by the various estimates of source duration shown in 
Figure 6. When interpreting ,this figure, it should be kept in mind that the various 
authors used different definitions for the duration. Furthermore, the source dura- 
tions estimated from the moment tensor inversions, as twice the interval between 
the centroid time and the catalog origin time, could be biased by contributions from 
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FIG. 6. Estimates of source duration, from references listed in Figure 1 legend. Pluses are 1/2 the 
durations reported by Houston and Kanamori (1986). Lines correspond to 1/fA [equation (11)], with/3 = 
3.9 km/sec and Aa = 30 and 60 bars (upper and lower lines, respectively). 

hypocenter inaccuracies (Giardini, 1984). Included for comparison are the durations 
computed using equations (11) for Aa = 30 and 60 bars. In spite of the large scatter, 
the data seem to agree in slope with the source duration scaling predicted for a 
constant-stress-parameter model, at least for the larger events. The observed values 
are underestimated by the model, but this might be a result of the different 
definitions of duration and at any rate has little effect on the theoretical predictions, 
which depend on the inverse square root of the duration. With the exception of a 
smattering of low values of duration, the results of Dziewonski and colleagues (1983) 
might be taken to indicate a lower limit of about 10 sec on average for the smaller 
earthquakes, although the degree to which this conclusion is affected by the 
previously mentioned qualifications regarding biases in the source time estimates is 
not known. Calculations show that including a lower limit of 10 sec would reduce 
the simulated log A by about 0.2 units for an M 5 event and 0.05 units for an M 7.5 
event. 
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SIMULATION OF A AND T :  RESULTS 

The simulation techniques and spectral scaling relations were used to make 
predictions of A and T as a function of moment magnitude at a fixed distance of 
70 °. The results are given in Figures 7 and 8. Each continuous curve represents the 
predictions for a given a-value in the equation for frequency-dependent t* [equation 
(5)]; for comparison, a = 0.7, 1.0, and 1.3 correspond to t* = 0.5, 0.8, and 1.1 sec 
respectively, at a period of 1.4 sec. The predictions were made at half-magnitude 
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Fro. 7. Observed (symbols) and predicted (lines) amplitudes as a function of moment magnitude. 
Observations given in Table 1. Predictions for various attenuations [(a) values, see equation (5)] and 
source spectral models. Stress parameters for (a), (b), and (c) were 5, 50, and 300 bars, respectively. 

intervals, thus accounting for some of the lack of smoothness in the curves. The 
stress parameters given in the figure legends were chosen so as to give a reasonable 
fit to the observations. It is clear from Figures 7 and 8 that, with the exception of 
the w-cube model, the amplitude and period data complement one another--log A 
is more sensitive to earthquake size than to attenuation and vice-versa for the 
period T. Because of its dependence on period, rhb shows even less dependence on 
attenuation than does log A (this statement is supported by calculations not shown 
here), thus making it less susceptible to regional variations in attenuation. 
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The comparison between theory and observation in Figure 7 seems to rule out 
the w-cube model, at least if a constant stress parameter is used. This model actually 
predicts a decreasing log A with increasing moment magnitude. Hanks (1979) 
discussed the reasons for this: the high-frequency spectra for the model scale as the 
stress parameter, v~hich by assumption is constant. In the random model, this 
constant amount of spectral energy is distributed over an ever increasing time span 
as the size of the earthquake increases, and therefore the rms (and, as it turns out, 
the peak) motion decreases with increasing moment magnitude. The obvious way 
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FIC. 8. Observed (short lines) and predicted (long lines) period of P wave on WWSSN short-period 
instruments estimated from rate of zero crossings. Observed period is an average over a range of moment 
magnitudes indicated by span of short line (95 per cent confidence limits are _+0.09 sec). Predictions for 
various attenuations [(a) values, see equation (5)] and source spectral models. Stress parameters for 
models in (a), (b), and (c) were 5, 50, and 300 bars, respectively. 

to avoid this is to allow an M dependence for Aa. Such a dependence was devised 
so as to fit the data qualitatively; the stress parameter for this model ranged from 
12 to 1100 bars for earthquakes from M 5 to M 9.5. Of course, allowing Aa to 
depend on moment magnitude would make it possible to fit A perfectly. This would 
be a highly unlikely model, however, and furthermore would not fit both the peak 
velocity and peak acceleration data from strong-motion records. It seems reasonable 
to dismiss the w-cube model from further consideration in this paper. 



SHORT-PERIOD P- AND S-WAVE RADIATION 57 

The situation is not as clear with the remaining three models. The w-square 
model with an a close to 0.9 gives the best simultaneous fit to both log A and T; if 
the observed period of 1.4 sec is taken as a strong constraint (a questionable 
assumption), a stress parameter of 30 bars gives an even better fit. In either case, 
the inferred t* at a 1.4-sec period of about 0.7 is in approximate agreement with 
that determined by other investigators (Cormier, 1982; Der and Lees, 1985). The 
w -15 model gives a stronger scaling of log A with M than does the ¢o -2 model. 
Although the scatter in the observations makes it difficult to discriminate between 
lines with different slopes, this stronger scaling does not seem to be supported by 
the data. This is especially so considering that 5 of the 6 earthquakes with the 
smallest moments had strike-slip mechanisms, and therefore because of radiation 
pattern effects, they should have body-wave magnitudes that are systematically 
lower than other events with comparable moments; this effect would lead to an 
anomalously steep slope in the data. The calculations based on the Gusev spectra 
with a ~0.8 gives a good fit to the log A observations, but underpredicts the mean 
of the period observations by about 0.25 sec. As stated, the model using Gusev's 
spectra has no free parameters (as did the w-square model) that can be adjusted to 
improve the fit to both the amplitude and period data. On the other hand, I have 
assumed that his source spectra can be used to describe P-wave radiation, although 
the spectra were derived from a mixture of P- and S-wave data. If a shift in the 
corner frequencies exists, then as pointed out to me by Gusev (written communi- 
cation, 1985), the P-wave radiation may be stronger than assumed in my calcula- 
tions. As a result, I may be underpredicting the amplitude data. 

In summary, in view of the scatter in the data and the simplifications in the 
models, it is hard to discriminate between the w-square and Gusev models. The only 
one that can be clearly eliminated is the constant-stress-parameter w-cube model. 
It is of interest to see how the models fare in predictions of peak ground acceleration 
and velocity at close distances. 

PEAK ACCELERATION AND VELOCITY 

Accelerograph recordings close to earthquakes provide the most direct measure 
currently available of the high-frequency radiation from faults. Few such recordings 
exist, however, for earthquakes greater than about M 7.7, thus providing the 
motivation for considering short-period P waves at teleseismic distances: In an 
earlier study (Boore, 1983), I compared the available accelerograph data from 
earthquakes in western North America (with 5.0 _-_ M _-_ 7.7) to theoretical predic- 
tions from the constant stress parameter, w-square model in which the energy is 
distributed randomly over the source duration. The model gave a good fit to many 
measures of ground motion, including peak acceleration, peak velocity, Wood- 
Anderson instrument response, and response spectra. I also showed that the peak 
acceleration and peak velocity data could not both be fit by a stochastic co-cube 
model. Although a stress parameter could be found that gave an excellent fit to the 
peak velocity data, the corresponding predicted peak accelerations underestimated 
the observations by an amount that increased with moment magnitude (a factor of 
2 for M = 5 to almost a factor of 5 for M = 7). 

I have repeated the comparison of theoretical and observed peak accelerations 
and velocities using the w-square and Gusev specifications of source spectra. Besides 
the new spectral scaling, a number of modifications to the model used in Boore 
(1983) were incorporated in the new calculations. First, explicit account was made 
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of wave amplification due to decreasing seismic velocities near the Earth's surface 
(this led to a different Aa than found earlier). The amplification factors for shear 
waves--which dominate horizontal ground motions--are listed in Table 3. Note 
that they are similar to those used by Gusev (1983). The P- and S-wave amplification 
factors differ for two reasons: the P- to S-velocity ratio increases near the surface, 
and for a given frequency the quarter wavelength of a P wave is greater than that 
of an S wave. The second difference from the earlier model is that a frequency- 
dependent Q was used in this paper. The specified Q function 

( / / 0 . 3 )  2 
Q-1 = 0.034 1 + (f /0 .3)  2.9 (12) 

was based, at high frequencies, on the attenuation of response spectra reported by 
Joyner and Boore (1982) and at low frequencies follows a general trend governed 
by the low values of Q-1 for surface waves relative to values of Q-1 near 1 Hz. A 
graphical comparison of this function with various measurements compiled by Aki 
is given in Boore (1984). A third change had to do with the attenuation of high 
frequencies, irrespective of distance. In Boore (1983), I imposed a high-cut filter 
with a corner frequency fm corresponding to the [ma~ of Hanks (1982). This filter 
had the form 

P(f) = [1 + (f/f~)8]-1/2. (13) 

It is generally agreed that some form of high-cut filter must be applied to acceleration 
spectra, at least in standard situations where recordings are made at the Earth's 
surface. Anderson and Hough (1984) have proposed an alternative form 

P(f) = exp(--rKf). (14) 

They found that K has a small dependence on distance and an intercept of about 
0.04 sec on rock at zero distance. Calculations show that the ground motions 
predicted with the use of equations (13) and (14) are similar if [m= 1/~rK. I have 
used both equations (13) and (14) in this paper, with K = 0.04 sec in the latter 
equation. This K corresponds to fm = 8 Hz, but for consistency with earlier studies, 
[m= 15 Hz was used in this paper. A few other slight changes relative to the previous 
study have been made: based on Boore and Boatwright (1984), the average radiation 
coefficient Ro .  was reduced to 0.55 from 0.63, and comparisons were made with the 
expected values of a randomly chosen horizontal component of ground motion 
rather than the larger of the two horizontal components [according to Joyner and 
Fumal (1985), this corresponds to a reduction of 0.06 and 0.08 units in the log of 
peak acceleration and peak velocity, respectively]. 

Only slight modifications to the theory presented earlier in this paper were 
necessary for the close-in predictions. In equation (1), r was taken to be the distance 
from source to receiver, I( f)  = (27r/) n, where n = 1 or 2 for velocity or acceleration, 
and because the horizontal components, dominated by shear waves, are of most 
interest, cs in equation (2) was replaced by/~. A multiplicative factor of 1 /q~ was 
included to account for the partitioning of energy into two horizontal components 
of motion. The other parameters used are given in Table 2. The calculations were 
made at a distance of 10 km for the same range of moment magnitudes as used in 
the simulation of teleseismic observations, although because of geometrical consid- 
erations the point source approximation must break down for the larger earthquakes. 
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The results for peak acceleration and for peak velocity are shown in Figure 9; 
simulations using the high-cut filter [equation (13)] are given in the left side of the 
figure and those using Anderson and Hough's filter are given in the right side. The 
discrepancies between the predictions and the observations are generally less than 
a factor of 2 (note that the ordinates in Figure 9 cover 3 log units, rather than 6 log 
units as in Figure 7). As expected, peak acceleration is more sensitive to the high- 
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FIO. 9. Peak acceleration and velocity as a function of moment magnitude at a distance of 10 km for 
average rock site. (Line) Observations summarized by regression analysis of Joyner and Boore (1982), 
reduced to account for difference between mean of two components and larger of two components (for 
which regression was calculated). Stated magnitude range of regression's validity indicated by endpoints 
of line. (Filled squares) Predictions using Joyner (1984) version of ~-square model, with the same stress 
parameter as in the teleseismic analysis (50 bars); (empty squares) predictions using Gusev's source 
spectra. High frequencies eliminated using equation (13) with fm = 15 Hz, in left column, and equation 
(14) with K = 0.04 sec, in right column. 

frequency filtering than is peak velocity. The peak acceleration predictions span 
the estimates based on the regression analyses of data, but this span is due more to 
the effective cutoff frequencies used in the high-cut filters than it is to the form of 
the filters. The stress parameter used in the ~-square model is the same as that 
used in the simulations of A: 50 bars. In my previous study of peak acceleration 
and velocity, I found that a stress parameter of 100 bars gave a good fit to the data. 
This apparent inconsistency is a result of my use of an additional amplification 
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variable in this study. As seen in Table 3, this variable corresponds to a multi- 
plicative factor of about 2. 

The model using Gusev's spectra (open squares) gives peak accelerations com- 
parable to the w-square model (filled squares) for larger earthquakes, as expected 
from the spectra in Figure 5, and peak velocities lower than those from the ~-square 
model. According to Gusev (written communication, 1985), the lower values may be 
due to the high shear velocity (f~ = 4 km/sec) he used in reducing the observations 
to source spectra. It should be noted that I used the P filters [equations (13) and 
(14)] in computing results for his spectra, although Gusev already accounted for the 
high-frequency limitation. Computations with and without the P filters, however, 
showed a maximum difference of only 0.08 units in log acceleration and even a 
smaller difference in log velocity..  

DISCUSSION 

Although the comparison of predicted and observed amplitudes and periods on 
WWSSN short-period seismograms at teleseismic distances and peak accelerations 
and peak velocities from accelerographs at close distances seems to favor the 
c~-square spectra over the Gusev (1983) source spectra, the predictions using the 
two descriptions of source spectra were generally within a factor of 2 of each other--  
not a large discrepancy by seismological standards. Judging from the spectra in 
Figure 5, however, the differences would be much larger for predictions of longer 
period measures (such as Ms) for the larger earthquakes. To utilize this possible 
discriminant between the two models, a correlation plot of Ms and M for the data 
appearing in Figure I was made, and the predicted dependence of Ms on M for each 
model was superposed. Unlike A, predictions of Ms were made by assuming that 
Ms was proportional to the log of spectral amplitudes at a frequency of 0.05 Hz. 
The resulting curve was constrained to pass through the Ms, M pair (5.85, 6.0)-- 
values determined from a regression analysis by Nuttli (1983a). The resulting 
comparison (Figure 10) indicates that the Gusev model fits the data well, which it 
should, because it was constrained to fit a relation between seismic moment and 
magnitudes based on waves with periods near 20 sec. The w-square model (not 
constrained by data at periods near 20 sec) does not fare as well. Although the Ms 
values of great earthquakes are poorly determined and in fact may represent lower 
bounds (H. Kanamori, oral communication, 1984), it is unlikely that the discrepancy 
between the data and the predictions from w-square spectra can be accounted for 
by biases in the reported Ms. I did investigate the assumption that Ms is propor- 
tional to the log of spectral amplitude, without any regard for source duration. In 
general, increasing the duration over which spectral energy is distributed will lower 
the peak motion. If true in the case of Ms, this would lead to lower predicted Ms, 
and would improve the fit of the w-square model to the data (and worsen the fit 
obtained by using Gusev's source spectra). Twenty-five simulated surface wave 
trains were generated at a fixed distance (70 °) for each moment magnitude, using 
random source phases, the c~-square model, an appropriately chosen excitation 
function, and dispersion curves for an average structure. Measurements of Ms from 
these artificial seismograms were averaged and plotted against moment magnitude. 
When constrained to pass through M -- 6.0, Ms -- 5.85, the result was virtually 
identical to the predicted relation in Figure 10a, thus eliminating one possibility for 
bringing the Ms prediction from the w-square model into accord with the observa- 
tions. 
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If the observed Ms values for the largest events are biased to the low side, then a 
model with source spectra intermediate to those given by Gusev and the w-square 
model might be justified. A possible model might be constructed by allowing the 
low-frequency corner ([A) in Joyner's model to occur at a lower frequency than it 
now does for the larger earthquakes, followed by a significant interval of decay (in 
the displacement spectrum) at a less rapid rate than o~ -2. In effect, curves for this 
model would lie between those of o~-square and Gusev in Figure 5, at least up to 
frequencies around 0.3 Hz. Such a model might be consistent with the decay rates 
of ~-1.5 and o~ -1'7 reported by Hartzell and Heaton (1985). 
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FIG. 10. Correlation of surface-wave magnitude an(] moment magnitude. (Symbols) Data (see sym- 
bols, Figure 1 for reference); (lines) theory, assuming that Ms is proportional to the log of spectra] 
amplitude at a 20-sec period. Lines are constrained to go through the Ms, Mpoin t  (5.85, 6.0) determined 
from Nutt l i  (1983a) regression ana]ysis, using (a) Joyner (1984) source mode] and (b) Gusev (1983) 
source spectra. 

CONCLUSIONS 

As pointed out by Houston and Kanamori (1986), a magnitude measure defined 
by the largest motion on the direct P wave recorded on a WWSSN short-period 
instrument shows no sign of saturation, even for the largest earthquakes ever 
recorded. This magnitude and the dominant period on the seismogram provide 
essential information about the radiation of short-period energy from great earth- 
quakes. Because of a lack of recordings, this information is not available at close 
and regional distances. The observations were compared to predictions from a 
simple point-source model that used several different specifications of the source 
spectra as a function of seismic moment. These spectral scaling laws included 
modifications of Joyner (1984) in which the stress parameter is constant and the 
high-frequency spectra are proportional to frequency to the -1.5, -2.0, and -3.0 
power. Also included were the source spectra derived by Gusev (1983). Of these, the 
model with a power of -3 .0  (the o~-cube model) can be definitely excluded--it 
completely failed to reproduce the increase of seismogram amplitude with earth- 
quake size. The other three models gave results that were generally similar to one 
another, with the w-square model (and a stress parameter of 30 to 50 bars) leading 
to the best simultaneous fit  to the amplitude and period data. 
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The ability of the models to predict peak acceleration and peak velocity close to 
faults was also investigated. As shown earlier [McGuire and Hanks (1980), Hanks 
and McGuire (1981), Boore (1983), Hanks and Boore (1984), McGuire et al. (1984), 
and Atkinson (1984)], the w-square model is capable of explaining many measures 
of ground motion, including peak acceleration and velocity. That conclusion was 
reconfirmed in this study, although inclusion of an explicit correction for amplifi- 
cation of shear waves as they approach the Earth's surface led to a stress parameter 
half that found in the previous studies. The Gusev model predicted lower peak 
accelerations and velocities than did the w-square model, although the two predic- 
tions generally differed by less than a factor of two to three. 

The stress parameter (50 bars) for the w-square mode] turned out to be similar 
to that found in the study of teleseismic recordings. It is interesting to note that in 
a previous study (Boore, 1983), 50 bars was also required in fitting peak accelerations 
and peak velocities from small earthquakes (0.5 _-< M _-_ 2.5) recorded deep in a 
South African mine (where the amplification correction was not needed because of 
the competent nature of the rock). There are enough uncertainties in the model, 
however, that it is difficult to claim the similarity of the stress estimates as evidence 
for a universal parameter rather than being a mere coincidence. 

The most striking difference between predictions using the Gusev (1983) and 
w-square spectra are for Ms values for large earthquakesithe w-square model 
predicts much higher values. The predictions using Gusev's spectra fit the observed 
correlation between Ms and M, which is not a surprise since Gusev constructed his 
spectra to do so. The failure of the w-square model near 20-sec period for great 
earthquakes is of little practical importance. The model Works quite well at shorter 
periods--periods in the range of concern to earthquake engineers. 

Although discriminating between various spectral scaling models if of some 
interest, the most important conclusion of this study may be that a simple source 
a n d  p r o p a g a t i o n  model ,  w i t h  e i t h e r  w-square  or  G u s e v  spec t ra ,  works  ve ry  well  in 

p r e d i c t i n g  the  h i g h - f r e q u e n c y  r a d i a t i o n  f r o m  m o d e r a t e  to  g rea t  e a r t h q u a k e s .  

ACKNOWLEDGMENTS 

Many people contributed to this paper by providing data, encouragement, and criticism. Foremost 
among them are Heidi Houston and Hiroo Kanamori, who provided data in advance of publication as 
well as helpful comments at various stages of the work, and Bill Joyner, whose constant enthusiasm and 
penetrating criticisms were essential to the completion of this study. The technical reviews of these 
people and also Joe Andrews and Tom Hanks were very useful. A. A. Gusev was kind enough to send 
me a number of comments on an earlier version of the paper. This work was partially supported by a 
grant from the U.S. Nuclear Regulatory Commission. 

REFERENCES 

Abe, K. (1981). Magnitudes of large shallow earthquakes from 1904 to 1980, Phys. Earth Planet. Interiors 
27, 72-92. 

Aki, K. (1967). Scaling law of seismic spectrum, J. Geophys. Res. 72, 1217-1231. 
Aki, K. (1972). Scaling law of earthquake source time-function, Geophys. J. R. Astr. Soc. 31, 3-25. 
Aki, K. (1983). Strong-motion seismology, in Proceedings of the International School of Physics, Enrico 

Fermi, Earthquakes: Observation, Theory, and Interpretation, Varenna, Italy, H. Kanamori and E. 
Boschi, Editors. 

Aki, K. and P. G. Richards {1980). Quantitative Seismology, W. H. Freeman and Co., San Francisco, 
California. 

Anderson, J. G. and S. E. Hough (1984). A model for the shape of the Fourier amplitude spectrum of 
acceleration at high frequencies, Bull. Seism. Soc. Am. 74, 1969-1994. 

Atkinson, G. M. (1984). Attenuation of strong ground motion in Canada from a random vibrations 
approach, Bull. Seism. Soc. Am. 74, 2629-2653. 



SHORT-PERIOD P- AND S-WAVE RADIATION 63 

Boore, D. M. (1983). Stochastic simulation of high-frequency ground motions based on seismological 
models of the radiated spectra, Bull. Seism. Soc. Am. 73, 1865-1894. 

Boore, D. M. (1984). Use of seismoscope records to determine ML and peak velocities, Bull. Seism. Soc. 
Am. 74, 315-324. 

Boore, D. M. and J. Boatwright (1984). Average body-wave radiation coefficients, Bull. Seism. Soc. Am. 
74, 1615-1621. 

Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. 
Res. 75, 4997-5009. 

Brune, J. N. {1971). Correction, J. Geophys. Res. 76, 5002. 
Cormier, V. F. (1982). The effect of attenuation on seismic body waves, Bull. Seism. Soc. Am. 72, $169- 

$200. 
Der, Z. A. and A. C. Lees (1985). Methodologies for estimating t*(f) from short-period body waves and 

regional variations of t*(f) in the United States, Geophys. J. R. Astr. Soc. 82,125-140. 
Dziewonski, A. M. and J. H. Woodhouse (1983). An experiment in systematic study of global seismicity: 

centroid-moment tensor solutions for 201 moderate and large earthquakes of 1981, J. Geophys. Res. 
88, 3247-3271. 

Dziewonski, A. M., A. Friedman, D. Giardini, and J. H. Woodhouse (1983). Global seismicity of 1982: 
centroid-moment tensor solutions for 308 earthquakes, Phys. Earth Planet. Interiors 33, 76-90. 

Evernden, J. F. (1977). Spectral characteristics of the P codas of Eurasian earthquakes and explosions, 
Bull. Seism. Soc. Am. 67, 1153-1171. 

Frasier, C. W. and R. G. North (1978). Evidence for w-cube scaling from amplitudes and periods of the 
Rat Island sequence (1965), Bull. Seism. Soc. Am. 68, 265-282. 

Fumal, T. E. (1978). Correlations between seismic wave velocities and physical properties of near-surface 
geologic materials in the southern San Francisco Bay region, California, U.S. Geol. Surv., Open-File 
Rept. 78-1067, 114 pages. 

Furumoto, M. and I. Nakanishi (1983). Source times and scaling relations of large earthquakes, J. 
Geophys. Res. 88, 2191-2198. 

Geller, R. J. (1976). Scaling relations for earthquake source parameters and magnitudes, Bull. Seism. 
Soc. Am. 66, 1501-1521. 

Giardini, D. (1984). Systematic analysis of deep seismicity: 200 centroid-moment tensor solutions for 
earthquakes between 1977 and 1980, Geophys. J. R. Astr. Soc. 77, 883-914. 

Gusev, A. A. (1983). Descriptive statistical model of earthquake source radiation and its application to 
an estimation of short-period strong motion, Geophys. J. R. Astr. Soc. 74, 787-808. 

Hanks, T. C. (1979). b values and w-~ seismic source models: implications for tectonic stress variations 
along active crustal fault zones and the estimation of high-frequency strong ground motion, J. 
Geophys. Res. 84, 2235-2242 . . . . . . . .  

Hanks, T. C. (1982). [max, Bull Seism. Soc. Am. 72, 1867-1879. 
Hanks, T. C. and H. Kanamori (1979). A moment-magnitude scale, J. Geophys. Res. 84, 2348-2350. 
Hanks, T. C. and R. K. McGuire {1981). The character of high frequency strong ground motion, Bull 

Seism. Soc. Am. 71, 2071-2095. 
Hanks, T. C. and D. M. Boore {1984). Moment-magnitude relations in theory and practice, J. Geophys. 

Res. 89, 6229-6235. 
Hartzell, S. H. and T. H. Heaton (1985). Teleseismic time functions for large shallow subduction zone 

earthquakes, Bull. Seism. Soc. Am. 75, 965-1004. 
Herrmann, R. B. (1985). An extension of random vibration theory estimates of strong ground motion to 

large distances, Bull. Seism. Soc. Am. 75, 1447-1453. 
Houston, H. and H. Kanamori (1986). Source spectra of great earthquakes: teleseismic constraints on 

rupture process and strong motion, Bull. Seism. Soc. Am. 76, 19-42. 
Joyner, W. B. (1984). A scaling law for the spectra of large earthquakes, Bull. Seism. Soc. Am. 74, 1167- 

1188. 
Joyner, W. B. and D. M. Boore (1982). Prediction of earthquake response spectra, U.S. Geol. Surv., 

Open-File Rept. 82-977, 16 pp. 
Joyner, W. B. and T. E. Fumal (1984). Use of measured shear-wave velocity for predicting geologic site 

effects on strong ground motion, Proc. 8th World Conf. Earthquake Engineering, San Francisco, 
California, II, 777-783. 

Joyner, W. B. and T. E. Fumal (1985). Predictive mapping of ground motion, in Evaluating Earthquake 
Hazards in the Los Angeles Region, U.S. Geol. Surv. Profess. Paper 1360, 203-220. 

Kanamori, H. (1977). The energy release in great earthquakes, J. Geophys. Res. 82, 2981-2987. 
Kanamori, H. and G. S. Stewart (1976). Mode of the strain release along the Gibbs fracture zone, mid- 



64 DAVID M. BOORE 

Atlantic ridge, Phys. Earth Planet. Interiors 11, 312-332. 
Koyama, J. and S. Zheng {1985). Excitation of short-period body waves by recent great earthquakes, 

Phys. Earth Planet. Interiors 37, 108-123. 
Koyama, J., M. Takemura, and Z. Suzuki (1982). A scaling model for quantification of earthquakes in 

and near Japan, Tectonophysics 84, 3-16. 
McGuire, R. K. and T. C. Hanks (1980). rms accelerations and spectral amplitudes of strong ground 

motion during the San Fernando, California earthquake, Bull. Seism. Soc. Am. 70, 1907-1919. 
McGuire, R. K., A. M. Becker, and N. C. Donovan (1984). Spectral estimates of seismic shear waves, 

Bull. Seism. Soc. Am. 74, 1427-1440. 
Newland, D. E. (1975). An Introduction to Random Vibrations and Spectral Analysis, Longman, London, 

England. 
Nur, A. and G. Simmons (1969). The effect of saturation on velocity in low porosity rocks, Earth Planet. 

Sci. Letters 7, 183-193. 
Nuttli, O. W. (1983a). Empirical magnitude and spectral scaling relations for mid-plate and plate-margin 

earthquakes, Tectonophysics 93, 207-223. 
Nuttli, 0. W. (1983b). Average seismic source-parameter relations for mid-plate earthquakes, Bull. Seism. 

Soc. Am. 73, 519-535. 
Nuttli, O. W. (1985). Average seismic source-parameter relations for plate-margin earthquakes, Tecton- 

ophysics, 118, 161-174. 
Richter, C. F. (1958). Elementary Seismology, W. H. Freeman and Co., San Francisco, California, 768 

pp. 
Silver, P. G. and T. H. Jordan (1983). Total-moment spectra of fourteen large earthquakes, J. Geophys. 

Res. 88, 3273-3293. 
Willmore, P. L. (Editor) (1979). Manual of Seismological Observatory Practice, World Data Center A, 

Report Series SE-20, U.S. Dept of Commerce, Boulder, Colorado. 

U.S. GEOLOGICAL SURVEY 
MS 977 
345 MIDDLEFIELD ROAD 
MENLO PARK, CALIFORNIA 94025 

Manuscript received 17 December 1984 


