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USE OF SEISMOSCOPE RECORDS TO DETERMINE ML AND PEAK 
VELOCITIES 

BY DAVID M. BOORE 

ABSTRACT 

More information about ground motion can be extracted from seismoscope 
records than a single point on a response spectrum. To demonstrate this, the 
relation between seismoscope response and Wood-Anderson instrument output 
and peak horizontal ground velocity has been studied by simulating the various 
responses for a range of distances and magnitudes. The simulations show that 
the relation used by Jennings and Kanamori (1979) to convert from peak seis- 
moscope readings to the peak response of a Wood-Anderson instrument has a 

distance- and magnitude-dependent systematic error. The error is negligible, 
however, for modern seismoscopes at distances of a few tens of kilometers. At 
several hundred kilometers, the relation underestimates the Wood-Anderson 
response by as much as a factor of two. The spread in Jennings and Kanamori's 
estimate of M, for the 1906 San Francisco earthquake, recorded on seismoscopes 
having relatively low natural frequencies (0.26 and 0.5 Hz), is reduced by the 
results in this paper--the upper value, from a seismoscope in Carson City, 
Nevada, at 290 km from the fault, going from M, "- 7.2 to ML -- 7.0 and the lower 
value, from Yountville, California (R ~ 60 km), going from about 6.3 to 6.4. About 
0.3 units of the remaining spread may be due to local geologic site conditions. If 
the 0.3 units is distributed equally beween the Yountville and Carson City record- 
ings, the estimates of M, for the San Francisco earthquake then become 6.5 and 
6.8, somewhat lower than Jennings and Kanamori's final estimates of 643- to 7. 
Although the error in using the relation of Jennings and Kanamori to estimate 
Wood-Anderson response was at most a factor of 1.6 for the 1906 earthquake, 
the error can be substantially larger for smaller earthquakes recorded on similar 
low frequency seismoscopes. 

The relation between Wood-Anderson and seismoscope response used by 
Jennings and Kanamori can be combined with an empirical relation between peak 
horizontal velocity and Wood-Anderson response to predict peak velocity from 
seismocope recordings. The simulations show that this relation (vmax = 8.1Awa, 
where Vm,x is the peak horizontal velocity in centimeters/second and Awa is one- 
half the range of the Wood-Anderson motion in meters) forms a lower bound for 
estimates of peak velocity from seismoscope recordings. The relation is good 
for stations within about 100 km of earthquakes with moment magnitudes of 
about 4.5 to 6.5, and it underestimates peak velocity by factors up to 2 or 3 for 
larger earthquakes at distances within 100 km. An application of the simulation 
method to the 1976 Guatemala earthquake (moment magnitude - 7.6) results in 
37 cm/sec as a lower bound to Vr,~x, with 66 cm/sec as a more likely value, from 
the seismocope recording in Guatemala City (approximately 25 km from the 
Motagua fault). 

INTRODUCTION 

Seismoscopes are simple, lightly-damped mechanical oscillators whose motion 
relative to the ground is recorded as a hodograph rather than a time series. They 
are inexpensive and rugged instruments. The modern seismoscopes have natural 
periods close to 0.77 sec and dampings near 0.1; these values were chosen with 
engineering applications in mind, for with them the seismoscope record provides a 
point on a response spectral curve that is especially relevant to engineering design. 
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(A typical eight-story building has a natural period close to 0.8 sec and under strong 
shaking, a damping near 0.1.) For whatever reason, seismoscope records have been 
generally neglected, at least by seismologists, even though many records are available 
and would seem to be a valuable supplement to the information on ground shaking 
provided by accelerographs, especially in countries and regions where budgets are 
limited and access is difficult. Although a few painstaking studies have reconstructed 
accelerograms from seismoscope data (Trifunac and Hudson, 1970; Scott, 1973), 
widespread use of seismoscopes would benefit from a simpler way of extracting 
ground motion information. In the only effort of this kind known to me, Jennings 
and Kanamori (1979) have recently extended the usefulness of seismoscope record- 
ings by devising a clever method for determining Richter local magnitudes from the 
peak response of seismoscopes. In a classic piece of seismological sleuthing, they 
applied their method to a determination of ML for the 1906 San Francisco earth- 
quake. This required the location and reconstruction of several of the seismoscopes 
that recorded the earthquake. (The natural frequencies and dampings for these 
instruments, given in Table 1, differ from those of modern seismoscopes.) A critical 
need in their method is a theoretical relation between the peak response of two 
oscillators subjected to the same ground shaking; such a relation allows the predic- 
tion of the peak amplitude of a Wood-Anderson seismograph, and thus the Richter 
local magnitude, ML, from the measured seismoscope response. Jennings and 
Kanamori used 

Awa__ Vw. -~ / (Tw,~ 3 :sc (1) 
A,e V,c V \ T ~ , ]  ~w~ 

TABLE 1 
INSTRUMENT CONSTANTS 

Natural Period 
Instrument (sec) Damping 

Wood-Anderson 0.80 0.80 
Modern seismoscope 0.77 0.10 
Duplex pendulum 3.8 0.25 

Carson City, Nevada (1906) 
Simple pendulum 2.0 0.02 

Yountville, California (1906) 0.10 

where V, T, and ~" are the static magnification, natural period, and damping, 
respectively. The subscript wa refers to the Wood-Anderson instrument and sc to 
the seismoscope. Two basic assumptions have been made in deriving equation (1). 
The first is that the ratio of peak responses of two oscillators is equal to the ratio 
of the rms of the oscillator outputs. Simple random vibration theory predicts that 
the peak (A~ax) and rms responses (Arms) of a stochastic time series with N extrema 
are related by 

Ama~ = Arm~[2 ln(N)] 1/2 (2) 

(Cartwright and Longuet-Higgins, 1956; Boore, 1983), and therefore the ratio of 
rms responses of two oscillators should be similar to the ratio of peak responses if 
the number of cycles in the two outputs is comparable. This in turn requires that 
the natural frequencies of the two oscillators be close to one another. The second 
assumption is that to within a scale factor, the integral of the squared spectrum of 
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the oscillator response excited by an arbitrary ground acceleration is equal to the 
integral of the squared spectrum of the oscillator impulse response; in other words, 
the excitation spectrum is "flat" enough in the passband of the oscillator to be 
factored out of the response integral. With this assumption, Parseval's theorem can 
be used to show that 

A.m~- (T3/£) ~/2 (3) 
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FIG. 1. Squared acceleration spectra (top) and squared instrument response to white acceleration 
(bottom). Acceleration spectra are from Joyner's (1984) model, with a critical earthquake of M = 7. 
Dotted curves are for Brune's (1970) scaling model. A stress parameter of 100 bars and a frequency- 
dependent Q, as given in the text, were assumed. The solid curves in the top and bottom portions of the 
figures have been arbitrarily adjusted vertically; only relative shapes are of interest. Squared spectra and 
the linear abscissa were chosen to better assess the merits of the assumption behind equation (1) in the 
text that to within a scaling factor, the integral of the squared spectrum of the oscillator response 
(obtained by adding the curves in the top and bottom portions of the figure) equals the integral of the 
squared oscillator impulse response (from the bottom portion of the figure). 

and equation (1) follows. As Figure 1 shows, the validity of the second assumption 
will depend on the period and damping of the oscillator and the magnitude and 
distance of the earthquake. A qualitative analysis of Figure 1 suggests that equation 
(3) gives a better approximation of Arm~ for a modern seismoscope than for a longer 
period seismoscope, both excited by a M = 6 earthquake at 10 km. Furthermore, at 
close distances the larger the earthquake, the better the approximation. At large 
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distances the absorption of seismic energy distorts the spectrum to such an extent 
that the second assumption behind equation (3) may not hold for any size earth- 
quake. 

A second application of seismoscope records is to estimate peak horizontal ground 
velocity. If equation (1) is valid, then the following empirical relation 

Vm~x = 0.77Aw, (4) 

between peak horizontal velocity (Vmax) and Wood-Anderson response (Awa) (Boore, 
1980, 1983) can be used to eliminate Awe, resulting in a relation beween peak velocity 
and seismoscope response. For a modern seismoscope with resonance frequency of 
1.3 Hz and a standard Wood-Anderson instrument (T = 0.8s, ~ = 0.8, V -- 2800), 
the predicted relation is 

Vmax = 8-1Sd10 (5) 

where Vmax is in centimeters/second and, in Jennings and Kanamori's notation, S~10 
is the maximum response in cm of the seismoscope reduced to the equivalent motion 
of a unit gain, 10 per cent damped oscillator with resonant period equal to that of 
the seismoscope [see equation (14) in Jennings and Kanamori, 1979]. The validity 
of equation (5) depends on that of the two relations from which it was derived. As 
shown earlier, various objections to the first relation--equation (1)--can be raised, 
and Boore (1983) showed that at a fixed distance, the second relation--equation 
(4)--is a good approximation over only a limited magnitude range (which happened 
to coincide with the magnitudes of the earthquakes providing the data upon which 
the empirical correlation was made). The purpose of this paper is to make quanti- 
tative assessments of the assumptions used in deriving equations (1) and (5). 

METHODS 

Tests of the assumptions have been made by computing the peak ground velocity 
and the responses of the Wood-Anderson instrument and the various seismoscopes 
to earthquakes of specified moment magnitudes and distances, using a recently 
developed method for the stochastic simulation of the motions from a specific source 
model (Boore, 1983). The method is based on some results from random vibration 
theory that use various spectral moments of the squared ground motion and 
instrument responses to predict the mean values of the peak motions corresponding 
to the spectra. The results have been checked with time domain simulations in 
which a time sequence of windowed, random Gaussian noise is filtered so that the 
amplitude spectrum agrees, on the average over an ensemble, with the specified 
spectra. Details of the random vibration method used here are as given in Boore 
(1983), except for modifications related to the choice of oscillator response (to be 
described in a future paper by myself and W. Joyner). The seismological basis of 
the method lies in the particular shape and magnitude scaling used for the spectra. 
In the previous paper just referenced, I found that the o~-square model of Brune 
(1970, 1971) with the addition of a high-cut filter (at 15 Hz) and a constant stress 
parameter of 100 bars gives a good fit to many observed measures of strong ground 
motion. A possible objection to using the Brune spectral-scaling model in this paper 
is that it would be applied to cases, such as the 1906 San Francisco earthquake, in 
which similarity of the source geometry is no longer valid. For this reason, the 
majority of the results in this paper are for a recently devised two-corner spectral- 
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scaling model by Joyner (1984) in which similarity holds for earthquakes less than 
a critical size, but breaks down for larger events (where the higher frequency corner, 
which may be thought of as being related to fault width, is held constant). When 
compared with observed data, most of which come from earthquakes for which 
similarity is a good assumption, the model gives a fit comparable to that of the 
Brune scaling model (Figure 1 shows acceleration spectra for a M -- 6 earthquake 
for both models). 

In Boore (1983), I was concerned with the magnitude scaling of ground motions 
at a close distance to the source; anelastic absorption was not an important factor. 
In this paper, however, I will be predicting shear wave motions as far as 290 km 
from the fault. As a provisional model, I have assumed r -1 geometrical spreading 
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FIG. 2. Observed inverse shear-wave Q versus frequency from Aki (published by Cormier, 1982) and 
the attenuation function given by equation (6) in the text (heavy line). 

and a frequency dependent Q. The specified Q function-- 

(//o.3) 2 
Q-1 = 0.034 (6) 

1 + (//0.3) 2.9 

-- is  consistent with frequency dependent Q measurements (summarized in Figure 
2). The high frequency behavior is also consistent with analyses of response spectral 
attenuation by Joyner and Boore (1982). 

RESULTS 

Estimates of ML. The results for the modern seismoscope are shown in Figure 3. 
The solid lines are the new predictions of the ratio of Wood-Anderson to seismoscope 
response; the dashed line is the value given by the relation [equation (1)] used by 
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Jennings and Kanamori (1979). The logarithmic ordinate in the figure was chosen 
so that the difference in ML stemming from the two estimates of the ratio of Wood- 
Anderson to seismoscope response could be read directly as the difference in 
logarithmic units between the two curves. The relation given by equation (1) leads 
to an overestimate of ML if the dashed line is above the solid line and vice-versa. 
The figure predicts that the relation gives an adequate prediction of the Wood- 
Anderson response--and thus ML--for earthquakes within at least 50 km of the 
fault. At larger distances, however, it can lead to systematic underestimates of as 
much as 0.3 units (but modern seismoscopes might not produce a discernable signal 
at these larger distances). 

The discrepancies between the new predictions and those based on equation (1) 
are even more pronounced for the instruments that recorded the 1906 earthquake 
(Figure 4), at least for moment magnitudes less than about 7.5. This is understand- 
able, for the natural periods of the older instruments are greater than those of 
modern seismoscopes. The increasing discrepancy as magnitude diminishes is due 
to the proximity of the corner frequency in the acceleration spectrum to the natural 

0.0 

-0.2 

<~ -0.4 

-o.6i 
S 

-0.8 

MODERN SEISMOSCOPE ( T:O.77s,  ~ =0.10 ) 

R:250km 

R : 50 km 

R : IOkm 

I I I I 
6 7 8 9 

M 

FIG. 3. Ratio of peak Wood-Anderson and modern seismoscope responses, normalized by static 
magnifications, as a function of moment magnitude. Solid lines from random vibration theory; dashed 
line from equation (1) of this paper. See text for details of the spectral model used in the calculations• 

frequencies of the instruments; the actual source spectrum violates the assumption 
of a white spectrum for frequencies below the corner frequency. The results in 
Figure 4 predict that using equation (1) would lead to an underestimate of ML from 
the Yountville record and an overestimate from the Carson City record. The 1906 
earthquake probably had a moment magnitude greater than about 7.5 (Thatcher, 
1975, whose estimate of moment gives a moment magnitude of 7.7), so the correction 
to the ML estimated by Jennings and Kanamori would increase Mr from Yountville 
by about 0.1 units (from their best estimate of 6.3 to 6.4) and decrease the Carson 
City estimate by about 0.2 units (from 7.2 to 7.0). A large portion of the remaining 
spread may be due to local geologic site conditions. The Carson City instrument 
was located in the middle of an alluvium filled valley; the Yountville instrument 
was at the edge of a valley, adjacent to volcanic bedrock. In an analysis of response 
spectra as a function of geologic site conditions, magnitudes, and distance, Joyner 
and Boore (1982) found that at periods of several seconds, 5 per cent damped 
response spectra at sites underlain by more than 5 m of soil were about 0.3 
logarithmic units larger than spectra recorded at rock sites. This suggests that the 
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range in ML estimates for the 1906 San Francisco earthquake should be reduced by 
another  0.3 units. I f  the s tandard Richter magnitude refers to an average of rock 
and soil recordings, it might be appropriate to distribute the 0.3 units equally 
between the two stations, yielding My estimates of about 6.5 to 6.8. These estimates 
are lower than  Jennings  and Kanamor i ' s  final estimates of 63 to 7. 
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FIG. 4. Ratio of responses from Wood-Anderson instrument and seismoscopes that recorded the 1906 
San Francisco earthquake. The two damping values for the Yountville seismoscope span the range 
estimated by Jennings and Kanamori (1979) for that instrument. Distances used were 50 and 290 km 
for the Yountville and Carson City recordings, respectively. For Carson City, the ratio was also computed 
for a close distance (10 km) as well as the fault-station distance used by Jennings and Kanamori in order 
to see the influence of distance (in addition to the corner frequency effect manifested in the magnitude 
dependence). Dotted lines are from Brune's (1970) spectral scaling model with a constant stress parameter 
(see Boore, 1983, for details). The horizontal dashed lines are from the relation used by Jennings and 
Kanamori to estimate Wood-Anderson response [equation (1) in the text]. The distance between the 
dashed and solid or dotted curves is a direct measure of the error in ML from using equation (1). The 
arrows show how equation (1) is modified if a correction is made for the number of cycles of oscillator 
response (see text). 

To see the sensitivity of the results to the spectral scaling model, the simulations 
of the Wood-Anderson and Carson City seismoscope responses have been repeated 
for the Brune scaling model used by Boore (1983). The results, shown as the dotted 
lines in the lower port ion of Figure 4, have the widest divergence for magnitudes 
around 6. This is easily explained. As seen in Figure 1, for this magnitude the 
largest difference in acceleration spectra for the two models occurs in a frequency 
range tha t  includes the peak response of the Carson City seismoscope. 

As discussed earlier, the discrepancy between equation (1) and the simulation 
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results is primarily due to the assumptions, made in deriving equation (1), that the 
excitation spectrum is essentially "fiat" and that the ratios of rms responses for two 
oscillators are the same as the ratio of the peak responses. To isolate the effect of 
the latter assumption, the relation between Amax and Arms given by equation (2) has 
been used to correct equation (1). The number of extrema are calculated from 
spectral moments (Boore, 1983); the effect is expected to be largest for the Carson 
City seismoscope since its resonant frequency differed the most from that of a 
Wood-Anderson instrument. As shown in the lower part of Figure 4, the correction 
leads to a substantial decrease in the systematic error for large earthquakes at close 
distances (for which the acceleration spectra are relatively fiat over a wide frequency 
range). 

Estimates of peak horizontal velocity. The predictions of peak velocity given by 
equation (5)--Vmax = 8.1Sdlo--have been checked by simulating Vmax and S~10 for a 
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FIG. 5. Correlation between peak horizontal velocity (Vm~x) and the displacement response of a unit 
gain, 10 per cent damped oscillator with 1.3 Hz resonant frequency (SdJ0). At each of four distances, 
simulations were made for moment magnitudes ranging in half-unit d~crements from M = 9. For 
convenience, the M = 9, M = 5, and in one case M = 3 points have been labeled. The light lines connect 
points at the same distance. The heavy, straight line (Vmax = 8.1Sdlo) is the predicted correlation discussed 
in the text. 

wide range of moment magnitudes and distances of 10, 50, 100, and 250 km. As 
shown in Figure 5, the correlation given by equation (5) forms a lower bound to 
predictions of peak velocity from seismoscope response. Equation (5) is quite good 
for magnitudes ranging from about 4.5 to 6.5 at distances within 100 km, and it 
underestimates the peak velocity by factors up to 2 or 3 for larger earthquakes. 
Although not shown, a similar suite of simulations has been done for the Brune 
spectral model. The major difference is seen at larger magnitudes, where there is 
less tendency for the Sdlo values to saturate than in the Joyner model. The overall 
character of the results remains unchanged. 

An interesting application of the simulation method is to the estimation of peak 
horizontal velocity from the Guatemala City seismoscope record produced by the 
1976 Guatemala earthquake. The earthquake had a moment of 2.6 x 1027 dyne cm 
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(Kanamori and Stewart, 1978), giving a moment magnitude of 7.6 (Hanks and 
Kanamori, 1979). The closest distance from the station to the fault was about 25 
km, and the average seismoscope response was equivalent to an Sdio of 4.6 cm 
(Jennings and Kanamori, 1979). Equation (5) gives a lower bound of 37 cm/sec for 
the peak velocity. The simulation method predicts Sdlo = 2 cm and V m a  x = 29 cm/sec 
for a rock site. The recording site, however, was underlain by a considerable 
thickness of soil. One way of accounting for this is to increase the simulations by 
the empirical soil factors found by Joyner and Boore (1982) for response spectra 
and peak velocity. These factors are both about 1.6, leading to estimates of Sdl0 = 
3.2 cm and Vmax = 46 cm/sec; the difference between the estimated and observed 
values of Sdlo is well within the uncertainty in the prediction of a single observation 
found by Joyner and Boore (1982), giving confidence in the simulated estimate of 
the peak velocity. The final estimate comes from multiplying Vma x by the ratio of 
the observed and estimated seismoscope responses (as a way of incorporating local 
site amplifications not included in the average factor of 1.6 used above). This gives 
a final estimate of/)max "~" 66 cm/sec for the Guatemala City recording of the 1976 
Guatemala earthquake. 

DISCUSSION 

The results in this paper confirm that modern seismoscope recordings can be 
used to infer Wood-Anderson instrument response (and thus ML). They also show 
that seismoscope recordings can be used to estimate peak horizontal velocity. The 
simplest procedure uses the relations given by equations (1) and (5). Being inde- 
pendent of earthquake magnitude, source-site distance, and source characteristics, 
however, these relations should be used with some care. The simulation study 
described in this paper found that the relation between peak amplitudes on a Wood- 
Anderson instrument and on a modern seismoscope [equation (1)] is adequate for 
earthquakes within 50 km, having moment magnitudes above 5.5. The relation 
underestimates the Wood-Anderson response by as much as a factor of 2 at a 
distance of 250 km. The relation is not as good, however, for seismoscopes whose 
resonant frequencies are lower than for the modern seismoscope. An analysis of the 
seismoscope recordings of the 1906 San Francisco earthquake, first analyzed by 
Jennings and Kanamori (1979), has reduced the probable magnitude of the earth- 
quake to ML with 6.5 to 6.8 from their estimate of 6~ to 7, and more significant, has 
reduced the spread between the estimates. 

The estimate of peak horizontal velocity from the seismoscope recordings again 
depends on magnitude, distance, and source model, but the relation given by 
equation (5) seems to give a lower bound for Vmax. An application to a seismoscope 
recording of the 1976 Guatemala earthquake (M = 7.6) gave a lower bound of 37 
cm/sec and a more likely value of 66 cm/sec at about 25 km from the fault. 
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