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L E T T E R S  TO T H E  E D I T O R  

A NOTE ON THE USE OF RANDOM VIBRATION THEORY TO 
PREDICT PEAK AMPLITUDES OF TRANSIENT SIGNALS 

BY DAVID M. BOORE AND WILLIAM B. JOYNER 

ABSTRACT 

Random vibration theory offers an elegant and efficient way of predicting peak 
motions from a knowledge of the spectra of radiated energy. One limitation to 
applications in seismology is the assumption of stationarity used in the derivation 
of standard random vibration theory. This note provides a scheme that allows 
the standard theory to be applied to the transient signals common in seismology. 
This scheme is particularly necessary for predictions of peak response of long- 
period oscillators driven by short-duration ground motions. 

INTRODUCTION 

Predicting peak time-domain amplitudes that correspond to a given amplitude 
spectrum is a common problem in seismology. For example, McGuire and Hanks 
(1980), Hanks and McGuire (1981), Boore (1983), Joyner (1984), and McGuire et 
al. (1984) have used various seismological models of the radiated spectrum to predict 
parameters of strong ground motion, such as peak acceleration, velocity, and 
response spectra. Although the peak motions can be obtained from time-domain 
simulations, this process can be cumbersome and expensive. A more efficient method 
that is particularly appropriate if the waveforms have a random character is to use 
some results from random vibration theory (RVT) that relate the expected peak 
amplitude [E(ymax)] out of a set of N amplitudes to the rms of the time series (Yr,,~) 
and thus, by using Parseval's theorem, to the spectrum (a detailed discussion is 
contained in Boore, 1983). From the RVT results of Cartwright and Longuet- 
Higgins (1956) 

E(Ymax)/Yrms = [(N)  (1) 

where/ (N)  ~ J-2 In N when N is large. The RVT assumes stationary time series. 
Very often, however, the time series of seismological interest are far from being 
stationary. In spite of this, Boore (1983) showed that RVT gave good predictions of 
peak acceleration and velocity determined from time-domain simulations. Some 
difficulties were encountered, however, for predictions of the peak response of long- 
period, lightly damped oscillators. The purpose of this note is to discuss a scheme 
that to a large extent overcomes these difficulties, at least for damping of 5 per cent 
and greater. 

ANALYSIS 

The essence of the problems encountered lies in defining time-domain durations. 
Duration enters in two ways: in determining N and in calculating Yr,,~. The number 
of extrema, N, that might produce the peak motion is given by a characteristic 
frequency of the motion times the duration of quasi-stationary shaking. The 
characteristic frequency is given by ratios of spectral moments [e.g., equations (26) 
and (27) in Boore (1983)] and in most applications the duration of shaking is taken 
to be the source duration (D,). The duration (Drrns) used in computing the rms is 
more difficult to determine. At first glance, from the definition of rms it would seem 
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that the duration should be D~. From Parseval's theorem, we would then have 

Yrms = IYI  2 
a o  

(2) 

where I Y I is the amplitude spectrum corresponding to a seismological model. The 
problem with using this equation is that in oscillators, the energy content in the 
spectrum can be distributed beyond D~, and therefore equation (2) will give a false 
estimate of y~,~ for the actual response. The motion beyond D~, however, cannot be 
used in determining N, because the response will have a steady decay after the 
excitation stops and cannot produce the peak motion. Two durations are needed, 
therefore, in using RVT to predict the peak response of an oscillator subjected to 
transient excitations: one to use in estimating N and one to use in determining y,,~. 
In our scheme, which is similar to that reported by Boore (1983), N is determined 
from D~ (usually given as the inverse corner frequency in simple source-scaling 
models), with the constraint that N be greater than or equal to 2. The determination 
of D~,, is the main contribution of this note. Our first idea was to set D~,, equal to 
the sum of the source duration and the oscillator decay time. For long-period 
oscillators excited by short duration motions, however, this scheme can lead to 
grossly exaggerated estimates of Drink. As an example, Figure 1 shows the response 
of a 6-sec, 5 per cent-damped oscillator to M = 4 and M = 7 earthquakes at 10 km 
distance (for ease of comparison, the model parameters used in the illustrations in 
this paper are the same as those used in constructing Figure 15 of Boore, 1983). 
Clearly, the D~,, for the smaller earthquake should be much shorter than for the 
larger event; if our first approach is used, however, Drms would have been 20.0 sec 
and 29.4 sec for the two events. From considerations of oscillator response to 
excitations much longer and much shorter than the oscillator period, we finally 
settled on the following equation for determining Drms 

oro_-os+oo(  ) (3) 

where a and n are adjustable parameters, "y = Ds/To and To is the oscillator natural 
period. The oscillator duration, Do, is given by 

Do = To/2~r~ (4) 

where ~" is the fractional damping of the oscillator. The form of equation (3) was 
chosen so that Drms approaches Ds and (Ds + Do) for excitations that are shorter 
and longer than the oscillator period, respectively. The adjustable parameters n and 

were determined by comparison of RVT and time-domain simulations. Some of 
these comparisons are shown in Figures 2 and 3, which show the response spectra 
for the two earthquakes used to generate the motions in Figure 1. The solid lines 
are based on the average of an ensemble of time-domain simulations (one member 
of which is shown in Figure 1). The RVT results using various schemes for the 
choice of D~,~ are shown by the symbols. From these and similar comparisons not 
shown here, the provisional values 

n = 3 (5a) 
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FIG. 1. Response of 6.2-see, 5 per cent-damped oscillator (top trace of each pair) to earthquakes with 
moment magnitudes of 4 and 7 at 10 km distance. The excitation is shown below the oscillator output. 
Only relative shape is of interest, the maximum excursion of each trace is scaled individually to a given 
size. The source durations (D,) are 0.31 and 9.7 sec for the magnitude 4 and 7 events, respectively, and 
the oscillator duration (Do) is 19.6 sec. 

a n d  

have been determined. 

= ½. (5b) 

DISCUSSION 

Although the scheme described above is simple and not laboriously optimized, it 
does reconcile the results of RVT and time-domain simulations over the range of 
magnitude and oscillator frequency of practical interest, thereby permitting the use 
of the more efficient and elegant RVT methods in predicting peak oscillator 
response. One of the reasons for its greater efficiency is that RVT returns an 
estimate of the expected value of the peak parameter without having to do a large 
series of time-domain simulations. Published applications up to now have included 
the computation of peak acceleration and velocity, response spectra, seismoscope 
response, and Wood-Anderson instrument response for earthquakes at local and 
regional distances (Hanks and McGuire, 1981; Boore, 1983, 1984; Hanks and Boore, 
1984; Joyner, 1984). 
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The success of using RVT in conjunction with the spectral scaling models to 
predict various measures of strong ground motion suggests that predictions of short- 
period teleseismic motion can also be made. Changes in the existing computer codes 
to do this are straightforward. Because the RVT method is largely based in the 

A 

E 
0 

v 

> 
n~ 

n 

10 - 
M=4 

X 

+ 

0.1 

0 . 0 1  

0 . 0 0 1  - 

A 

4- X Drms = D s 

[] n=2 Drms =Ds+ D O 
An=l 

4- Drms = Ds+D o 
I I I I I 

0 0 0 0 1 0 .  I 0 . 3  I 3 10 3 0  

FREQUENCY ( H z )  
FIG. 2. Comparison of pseudo-velocity response spectrum (PSRV) computed from time-domain 

simulations {solid line) and random vibration theory for a magnitude 4 earthquake (compare with Figure 
15 in Boore, 1983). A sample accelerogram for the earthquake and the corresponding response of the 
lowest frequency oscillator used in this figure are shown in Figure 1A. The RVT results are for a range 

1 of n, with ~ = 3. Clearly, n = 3 is preferred. 
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FIG. 3. Same as Figure 2, but for a magnitude 7 earthquake. A sample accelerogram and oscillator 
response are shown in Figure lB. Because the excitation is longer than the longest period oscillator 
considered, the RVT results are not sensitive to the parameter n. 

frequency domain, inclusion of instrument response and anelastic attenuation (with 
frequency dependence, if necessary) is particularly easy. An obvious application is 
to studies of seismic scaling laws, in which various earthquake magnitudes are 
computed from theoretical spectra for comparison with data. Previous studies, such 
as those of Aki (1967, 1972), Kanamori and Anderson (1975), Geller (1976), and 
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Nuttli {1983), have considered only the relative change in the peak responses of 
various instruments rather than the absolute values. Using the RVT method, 
absolute values can be predicted. Furthermore, to avoid having to synthesize time- 
domain motions in order to pick off peak values, and thus magnitudes, these studies 
have commonly assumed that the magnitudes are directly proportional to the 
logarithms of spectral amplitudes at fixed periods (1 sec for mb and 20 sec for Ms). 
Although this assumption may be valid for Ms up to about 71, Hanks (1979) pointed 
out that it is questionable for mb [this assumption was used for mb be Geller (1976) 
and Nuttli {1983)]. Dependence on this assumption can be avoided with RVT. In 
its present form, RVT is capable of predicting the peak response to body-wave 
excitation. Application to dispersed surface-wave excitation will require further 
extensions of the method, similar in spirit to those discussed in this note. 

A number of improvements in RVT have been made since the publication of the 
Cartwright and Longuet-Higgins (1956) theory used here (e.g., Mason and Iwan, 
1983). Although the Cartwright and Longuet-Higgins theory gives quite satisfactory 
predictions of peak motions, it may be that further advances will be possible using 
recent developments in RVT. 
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