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STOCHASTIC SIMULATION OF HIGH-FREQUENCY GROUND 
MOTIONS BASED ON SEISMOLOGICAL MODELS OF THE 

RADIATED SPECTRA 

BY DAVID M. BOORE 

ABSTRACT 

Theoretical predictions of seismic motions as a function of source strength are 
often expressed as frequency-domain scaling models. The observations of inter- 
est to strong-motion seismology, however, are usually in the time domain (e.g., 
various peak motions, including magnitude). The method of simulation presented 
here makes use of both domains; its essence is to filter a suite of windowed, 
stochastic time series so that the amplitude spectra are equal, on the average, 
to the specified spectra. Because of its success in predicting peak and rms 
accelerations (Hanks and McGuire, 1981), an ~-squared spectrum with a high- 
frequency cutoff (fro), in addition to the usual whole-path anelastic attenuation, 
and with a constant stress parameter (Aa) has been used in the applications of 
the simulation method. With these assumptions, the model is particularly simple: 
the scaling with source size depends on only one parameter--seismic moment 
or, equivalently, moment magnitude. Besides peak acceleration, the model gives 
a good fit to a number of ground motion amplitude measures derived from 
previous analyses of hundreds of recordings from earthquakes in western North 
America, ranging from a moment magnitude of 5.0 to 7.7. These measures of 
ground motion include peak velocity, Wood-Anderson instrument response, and 
response spectra. The model also fits peak velocities and peak accelerations for 
South African earthquakes with moment magnitudes of 0.4 to 2.4 (with fm = 400 
Hz and Aa = 50 bars, compared to fro" 15 Hz and Aa = 100 bars for the western 
North America data). Remarkably, the model seems to fit all essential aspects of 
high-frequency ground motions for earthquakes over a very large magnitude 
range. 

Although the simulation method is useful for applications requiring one or more 
time series, a simpler, less costly method based on various formulas from random 
vibration theory will often suffice for applications requiring only peak motions. 
Hanks and McGuire (1981) used such an approach in their prediction of peak 
acceleration. This paper contains a generalization of their approach; the formulas 
used depend on the moments (in the statistical sense) of the squared amplitude 
spectra, and therefore can be applied to any time series having a stochastic 
character, including ground acceleration, velocity, and the oscillator outputs on 
which response spectra and magnitude are based. 

INTRODUCTION 

Recordings of high-frequency (greater than about 1 Hz) ground motions have two 
main uses: (1) they provide the seismologist with data basic for the understanding 
of source processes; and {2) they are used by engineers to derive the motions that 
structures must be designed to withstand. Of importance for either of these uses, 
even if not absolutely required, are methods for generating the ground motions for 
hypothetical earthquakes. While both engineers and seismologists recognize the 
stochastic nature of high-frequency ground motions, they estimate ground motions 
in fundamentally different ways (see Boore, 1983, for a collection of recent refer- 
ences). The engineer relies heavily on an empirical approach in which the motions 
are constructed so as to agree in essential ways (such as amplitude, frequency 
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content, and duration) with existing data (e.g., Iyengar and Iyengar, 1969; Nau et 
al., 1982; the references therein). The actual methods for constructing the motions 
range from filtering and windowing Gaussian noise to adding together suitably 
scaled recorded accelerograms. These techniques might be called replicative or 
empirical models; they have a long history. Of more recent development are the 
predictive or physical models used by seismologists. These models usually involve 
either the prediction of the motions from a fault of specified dimension and 
orientation whose properties, such as slip or rupture velocity, vary randomly over 
the fault surface (e.g., Bouchon, 1978; Joyner and Boore, 1980), or the random 
superposition of the theoretical radiated fields from many circular patches, concen- 
trated, in effect, at a point (e.g., Boatwright, 1982). The former is useful for site- 
specific simulations, whereas the latter captures the essence of the high-frequency 
motion at an average site from an average earthquake of specified size. 

In this paper, I present a simple method that is a hybrid of the approaches taken 
by engineers and seismologists. The idea is to generate a time series of filtered and 
windowed Gaussian white noise whose amplitude spectrum approximates the accel- 
eration spectrum given by physical considerations--in this case the Brune (1970) 
spectrum modified to remove frequencies above a certain cutoff frequency. A suite 
of accelerograms can be generated by varying the seed of a pseudo-random number 
generator, and various measures of the motion can be computed for comparison 
with data. With a prescribed stress parameter, the scaling with earthquake size at 
a given distance depends on only one parameter--seismic moment (or equivalently, 
moment magnitude). Surprisingly, this simple one-parameter scaling model provides 
a good fit to many measures of high-frequency strong ground motion, measures 
based on analysis of hundreds of strong-motion recordings. 

This paper is not the first to use the Brune spectrum as the basis for explaining 
high-frequency motion; the idea was presented and elaborated on in a series of 
articles by Hanks and McGuire (Hanks, 1979a, 1979b; McGuire and Hanks, 1980; 
Hanks and McGuire, 1981). They were concerned with rms and peak accelerations. 
Using the simulation method presented here, I find that the same spectral model 
can also predict peak velocity, Wood-Anderson instrument response, and response 
spectra. 

Hanks and McGuire used Parseval's theorem to predict the rms acceleration 
(arm,) from the integral of the squared acceleration spectrum; they then used some 
results from random vibration theory to relate the arm~ to peak ground acceleration 
(amax). This approach is much simpler and less costly (but potentially less exact) 
than simulating time series and measuring the peak motions. Using equations from 
Cartwright and Longuet-Higgins (1956), I have extended the random vibration 
predictions to peak velocity, Wood-Anderson response, and response spectra. The 
random vibration results are generally in excellent agreement with those from the 
simulated time series. 

METHOD 

The essence of the method is to generate a transient time series whose spectrum 
matches, at least as an ensemble average, a specified amplitude spectrum. This goal 
can be obtained in a number of ways. For example, first a window can be applied to 
a time sequence of random white noise with zero mean. Then the amplitude 
spectrum of this time series can be replaced by the desired spectrum, leaving the 
phase untouched. Transformation back to the time domain results in a transient 
time series whose amplitude spectrum exactly matches the specified spectrum. 
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Unfortunately, the forced shape of the amplitude spectrum can introduce narrow- 
band oscillations in the record. Another method starts with random phase and the 
given amplitude spectrum in the frequency domain. After transformation to the 
time domain, a suitably normalized window is applied to produce a transient signal. 
The window, however, distorts the spectrum; there is no assurance that the desired 
spectrum will be attained, even with an average over the ensemble of simulations. 
In a sense, these two approaches are end members of a range of methods trying to 
achieve two things: a time series of finite duration with a specified amplitude 
spectrum. The first method produces a time series that is only approximately of 
finite duration but does have the specified amplitude spectrum; the second method 
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FIG. 1. Fourmr amphtude spectrum of ground acceleration at 10 km from a magmtude 5 earthquake. 
(Top) Smooth curve: given spectra, jagged curve: spectra for one realization of the simulation process 
(Bottom) As above, but averaged over 20 simulations (the averaged spectrum is the square root of the 
arithmetm mean of the energy density spectrum). 

achieves the converse. A third method, falling between the first two, does not suffer 
from the limitations of the first two methods; it is the basis for all the results in 
this paper. It starts with the windowing of a time sequence of band-limited random 
white Gaussian noise with zero expected mean and variance chosen to give unit 
spectral amplitude on the average (this criterion is met if the variance of the noise 
is equal to the total bandwidth, and if the window is normalized such that the 
integral of its square is unity). The spectrum of the windowed time series is 
multiplied by the specified spectrum, and transformation back to the time domain 
yields the final time series. An example of an individual, average, and desired 
spectrum for a particular earthquake is shown in Figure 1; time series will be shown 
later. 
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The application of this method requires the spectral shape as a function of 
earthquake size. Only the shear wave contribution to the strong motion is considered 
in this paper; in almost all cases it dominates the motion, particularly on the 
horizontal components of ground shaking. The form adopted here for the accelera- 
tion spectrum A (m) of shear waves at a distance R from a fault with moment M0 is 

A ( m )  = C M o S ( m ,  m~)P(m, m,,) - -  
e -wR/2Q~ 

R 
(1) 

where C is a constant given by 

C = Ro~, • F S  • P R T I T N  

4 r p f l  3 
(2) 

R,¢ is the radiation pattern, F S  is the amplification due to the free surface, P R T I T N  

is the reduction factor that accounts for the partitioning of energy into two 
horizontal components (taken as 1/~/2 here), and p and ~ are the density and shear 
velocity. Following Aki (1967) and Brune (1970), the source spectrum S is given by 

m 2 

S(m, me) - 1 + (mime) 2 (3) 

where mc is the corner frequency. The spectrum in equation (3) is that of the m- 
squared model; some simulations were also made with an w-cubed model in which 
the superscript 2 in the denominator was replaced by a 3. The P(m, ram) in equation 
(1) is a high-cut filter that accounts for the observation that acceleration spectra 
often show a sharp decrease with increasing frequency, above some cutoff frequency 
m~, that cannot be attributed to whole path attenuation [the whole path attenuation 
is accounted for by the exponential term in equation (1); frequency-dependent Q 
could be easily included if desired]. Papageorgiou and Aki (1983) have attributed 
mm to source processes and Hanks (1982) to attenuation near the recording site. 
The form for the high-cut filter P has arbitrarily been taken to be 

P(m, m,:) = [1 + (m/mm)2s] -1/2 (4) 

where s controls the decay rate at high frequencies. Based on several observed 
spectra, s was assigned a value of 4. 

Assuming that mm is not a function of earthquake size, the spectra for different 
earthquakes are controlled by two parameters: seismic moment (M0) and corner 
frequency (fc = mc/2r). These two source parameters can be related through an 
equation involving another parameter with the dimensions of stress (Aa) 

/c = 4.9 × 106 f l (Aa /Mo)  1/3 (5) 

where [c is in Hertz, ~ is in kilometers/second, Aa is in bars, and Mo is in dyne-cm 
(Brune 1970, 1971). Although originally derived from a relation between static stress 
drop, fault slip, and fault size, Aa is best thought of here as simply a parameter 
controlling the strength of the high-frequency radiation. It has been referred to in 
the literature by a variety of names, including effective stress, dynamic stress drop, 
and rms stress drop. 
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A transient accelerogram is obtained in the time domain by use of a shaping 
window whose length is controlled by the source duration (Td). This simplistic 
procedure does not produce variations of the frequency content with time, but such 
variation is unimportant for the high-frequency ground motions of concern here. 
Following Hanks and McGuire (1981), T~ is related to the corner frequency by 

Td = [c -~. (6) 

Two windows have been used in this study, the simplest being a box of duration Td. 
A more realistic accelerogram is obtained with the shaping window 

w(t) = atbe-CtH(t) (7) 

where H(t)  is the unit-step function. Saragoni and Hart  (1974) found that this 
window is a good representation of the averaged envelope of the squared acceleration 
time series. It is convenient to choose the shape parameters b, c such that: (1) the 
peak of the envelope occurs at some fraction E of a specified duration Tw(not 
necessarily the end of the time series); and (2) the amplitude at time Tw is reduced 
to the fraction ~ of the maximum amplitude. These conditions yield 

b = -e  In 7/[1 + e(ln e - 1)] (s) 

and 

c = b / ~ T w .  (9) 

The normalizing factor a can be chosen in several ways 

a = (e /~Tw)  ~ (10) 

gives a maximum amplitude of unity, and 

[ (2c) 2b+l_ ] a - -  1 /2  (11) 
(I;(2b + 1) 

results in an envelope with unit squared area (F is the gamma function). 
In all applications in this paper, T/was chosen to be 0.05. With this choice, I found 

that ~ = 0.2 was consistent with values of a, b, and c obtained by Saragoni and Hart  
(1974) from fitting the envelope function to 22 strong-motion accelerograms. Setting 
T~. = 2T~ gives a record whose duration of strong shaking (defined in the caption 
to Figure 2) is close to Td, as was desired (Figure 2). 

A flow chart outlining the method is given in Figure 3. As shown there, a suite of 
accelerograms can be generated by simply changing the seed of the pseudo-random 
number generator. Statistics of various measures of ground motion, such as peak 
acceleration, velocity, and Wood-Anderson instrument response, are collected for 
comparison with data. 

MODEL VERIFICATION 

Many methods have been proposed for simulating suites of accelerograms for use 
as input motions in assessments of site and structural response; the method proposed 
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here is unique in its combination of stochastic simulation and physically based 
spectral amplitudes and record duration. Although any spectral scaling law could 
be used, I have emphasized the scaling law obtained from the ~-squared model and 
Brune's relation between fc, A~, and M0. This particular scaling law was chosen 
because of the success that Hanks and McGuire (1981) had with it in explaining 
observed peak and rms accelerations. A more thorough test of this scaling model is 
presented here by comparing simulated peak accelerations, peak velocities, response 
spectra, and Wood-Anderson instrument responses against values obtained from 
recent regression analyses of several hundred strong-motion recordings by Boore 
(1980) and Joyner and Boore (1981, 1982). The model is also tested against ground 
motions from aftershocks of the 1975 Oroville, California, earthquake and from 
small earthquakes recorded deep in a South African gold mine by McGarr et al. 
(1981). 
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Fro. 2. Duration of simulations, defined as the time interval between the 95 and 5 per cent levels of 
the cumulative integral of acceleration squared, plotted as a function of inverse corner frequency. 

Western North  America ground motions. In the previous section, the spectral 
shape and amplitude were determined by a small number of parameters. 
If fro( = Wm/2~) is taken to be a path or site effect, the only source-dependent 
parameters are Mo and Aa (or [~). From an analysis of 16 California earthquakes, 
Hanks and McGuire (1981) found that A~ was about 100 bars (to within a factor of 
two) although the independently estimated static stress drops ranged from 6 bars 
to 140 bars. Because of this, I fixed Aa as 100 bars in the simulations, thus reducing 
the source dependence of the scaling law to only one parameter--seismic moment. 
The regression analyses against which the simulations will be compared used 
moment magnitude (M) rather than moment (Mo) as the measure of source size, 
and that has been done here as well. Moment magnitude is defined as 

M - 2/3 log Mo - 10.7 (12) 
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(Hanks and Kanamori, 1979). All but one of the other parameters needed in the 
simulations were taken from Hanks and McGuire (1981): p = 2.7 gm/cm~; ~ = 3.2 
km/sec, R o ,  = 0.63, Q = 300, F S  = 2, and P R T I T N  = 0.71. The one exception was 
f,~: Hanks and McGuire related it to distance, Q, and instrument bandwidth (in the 
case of aftershocks of the 1975 Oroville, California, earthquake), but in a subsequent 

CHOOSE EARTHQUAKE MAGNITUDE I 
• COMPUTE SOURCE PARAMETERS 

o oos  s 
I GENERATE ACCELERATION TIME SERIES 

1 FILL ARRAY WITH GAUSSIAN NOISE 
2 APPLY NORMALIZED SHAPING WINDOW 
3 TRANSFORM TO FREQUENCY DOMAIN 

SPECTRUM MODEL SPECTRUM 4 MULTIPLY COMPLEX BY 

i 5 TRANSFORM TO TIME DO~I~IN 

PROCESS THE ACCELERATION TIME SERIES 

, ~  1 STORE PEAK ACCELERATION 
n 2 COMPUTE AND STORE INTEGRAL OF SQUARED 
I ACCELERATION 
II 3 COMPUTE TIME SERIES AND STORE VALUES OF 
I (a) Velocity 

(b) Oscillators of selected frequency and damping 

n (c) Wood-Anderson nnstrument 

I 4 PLOT AND STORE VAR OUS T ME SERIES IF DESIRED 

; + 

No + 
I COMPUTE AND PRINT SUMMARY STATISTICS OF 1 

VARIOUS MEASURES OF GROUND MOTION 

FIG. 3 Flow chart showing simulation technique used in this paper. Other techniques, briefly 
described in the text, lead to similar scaling of the various measures of ground motion. 

paper Hanks (1982) noted that, at close distances, the spectra decayed much more 
rapidly with increasing frequency than predicted by the Q-term in equation (1). 
Based on conversations with T. Hanks, I have used f~, = 15 Hz (with some runs for 
f,~ = 7.5 and 30 Hz). 

It should be emphasized that the parameters in the simulations were not modified 
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to fit the data. On the other hand, 7 of the 16 earthquakes used by Hanks and 
McGuire (1981) also provided data in the regression studies of Joyner and Boore 
(1981, 1982) and therefore a certain degree of similarity might be expected between 
the simulations and the regression results. Joyner and Boore used data from up to 
17 events, however, so the overlap between the studies is not great. 

The majority of the comparisons between simulations and data will be made as a 
function of magnitude at a fixed distance of 10 km (in evaluating the equations of 
Joyner and Boore, r rather than d was set equal to 10 km). The empirically 
determined magnitude dependence comes from data that is mostly at distances 
beyond 10 km. The observed attenuation curves, derived within the context of a 
point source approximation such as used in the simulation model, was used to 
extrapolate the magnitude scaling to r = 10 km. As discussed by Joyner and Boore 
(1981, Appendix), the actual scaling close to large earthquakes would be somewhat 
different from that determined at distances of tens of kilometers. A distance of 10 
km was chosen because I wished to emphasize the scaling with source strength. 
Comparisons at greater distances might be degraded by the inadequacy of the 
constant-Q model or the value adopted for Q. 

Spectra of acceleration, velocity, and Wood-Anderson response are shown in 
Figure 4 for moment magnitudes from 4 to 7. These are the target spectra for the 
simulations. Examples of the acceleration, velocity, and Wood-Anderson time series 
are shown in Figure 5 for magnitudes of 4 and 7. The records have a reasonable 
appearance. Among other things, note the similarity between the velocity and 
Wood-Anderson traces, a similarity pointed out by Kanamori and Jennings (1978). 
The velocity spectra fall off less rapidly at high frequencies than do the Wood- 
Anderson spectra, thus explaining the enrichment of the former in high frequencies. 
Note also the simple character of the M = 4 Wood-Anderson record (and to a lesser 
extent the velocity record); even though the simulation method starts with a 
sequence of random numbers, the subsequent windowing and filtering can produce 
a nonrandom-appearing waveform. 

These time series can be used in all manner of soil and structural response 
calculations (e.g., Boore and Joyner, 1983). The business of this section, however, 
is the comparison of various amplitude measures of the simulated ground motion 
with those obtained from analyses of data. The geometric means of the ground 
motion extrema were computed from 20 simulations at each magnitude. Two velocity 
traces were calculated for each magnitude: one by integration of the acceleration 
time series; the other by high-pass filtering of the first velocity trace. The filtering 
was intended to simulate the standard processing to which the strong-motion data 
are subjected. The difference in the velocity values is only important at magnitudes 
above about 7.0. 

The peak accelerations and peak velocities from the simulations are shown in 
Figure 6, along with the regression curves of Joyner and Boore (1981, 1982). The 
regression curves are based on numerous strong-motion records from many earth- 
quakes of magnitude 5 or greater located in western North America (the number of 
records used differs for the acceleration and velocity curves; furthermore, the 1982 
study contains more velocity data, but fewer acceleration data, than the 1981 paper). 
For magnitudes above 5, the simulations define straight lines with slopes of 0.35 
and 0.50 for acceleration and velocity; respectively. These lines are in reasonable 
agreement with the data, both in slope and in absolute level. Below magnitude 5, 
the simulations predict a steepening slope with decreasing magnitude. Unfortu- 
nately, the Joyner and Boore studies considered no earthquakes with magnitude 
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less than 5. Seekins  and H a n k s  (1978), however,  computed  the average values of  
peak accelerations from aftershocks  of  the 1975 Oroville, California, earthquake,  
recorded at distances  near 10 km. These  average values,  shown in Figure 6, are 
cons i s tent  with  the s imulat ion  predictions.  Later I will show that  the s imulat ion 
model  gives a reasonable  fit to peak velocit ies  and accelerations from data recorded 
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in a South  African gold mine by McGarr et al. (1981) for earthquakes  with m o m e n t  
magnitudes  from 0.4 to 2.4. 

Pseudo-ve loc i ty  response  spectra (psrv) for 5 per cent  damping at frequencies 
close to 0.5, 1, 3, and 8 H z  are shown in Figure 7. As with the peak acceleration and 
velocity,  the s imulat ions  provide a fit to the data that  is surprisingly good, consid- 
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ering the simplicity of the model. The discrepancy at the higher frequencies may be 
less significant than it appears. It is not increasing with frequency, and the curve 
based on data would be lowered in amplitude if raw, rather than smoothed regression 
coefficients had been used. It is interesting to note that both simulations and data 
show a nonlinear dependence on magnitude that decreases with increasing oscillator 
frequency (at least above a magnitude around 5). The primary reason for this is the 
interaction between the magnitude-dependent corner frequency and the fixed fre- 
quency band of the oscillator impulse-response. For example, the 1-Hz oscillator 
frequency--near the corner frequency for magnitude 5--is below fc for smaller 

M = 4 0  

0 04g 

M = 7 0  

A C C E L E R A T I O N  

cm/s  

--I 0.8m 

WOOD-ANDERSON 

0 5 10 15 20 
TIME (s)  

FIG. 5. Time serms for magnitude 4 and 7 earthquakes. Peak motions are the average of peaks from 
20 such time series. A low-cut filter with a cutoff frequency of 0.10 Hz has been applied to the velocity 
trace. 

events and above it for larger ones. Because the acceleration spectrum at frequencies 
above fc increases less rapidly with source size than at lower frequencies (Figure 4), 
the relation between the response spectrum and magnitude will have a steeper slope 
at small magnitudes than at larger magnitudes, thus leading to curvature in the 
scaling relation. The curvature in the dependence of peak acceleration and peak 
velocity on moment magnitude also depends on an interaction between character- 
istic frequencies in the model--in this case, the corner frequency [c and the high- 
frequency cutoff f,~. 

Although the peak acceleration, peak velocity, and response spectra data are all 
fit with a stress parameter equal to 100 bars, this must be taken in context with the 
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other parameters used in the simulations. For example, the average radiation pattern 
can vary by 10 to 20 per cent depending on whether equal weighting is used for the 
whole focal sphere and whether the rms or mean radiation pattern is computed. 
Furthermore, the simulations were compared with peak motions taken from the 
larger of the two horizontal components on each recording; the PRTITN factor of 
1/~f2 used in the simulations is more appropriate for a peak motion chosen randomly 
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from the two horizontal components. The difference in the regression curves based 
on the two definitions of peak motion can be over 10 per cent (Campbell, 1981). 
Because of these factors, all that can be said about the stress parameter is that a 
value of 100 bars is consistent with the data when the other parameters are as given 
below equation (12). 

The final strong-motion parameter to be checked for the western North America 
data is the Wood-Anderson instrument response. There are several ways of checking 
the simulated response of a Wood-Anderson instrument with the data. Because the 
distance attenuation aspects of the model have been deemphasized in this paper, 
and because the attenuation curve used in calculating local magnitudes may not be 
correct within a few tens of kilometers of the fault (Luco, 1982; Jennings and 
Kanamori, 1983). I have chosen to study the relation between peak velocity and 
Wood-Anderson response determined from the same accelerogram. In an earlier 
paper (Boore, 1980), I found that the peak velocity (vmJ and one-half the maximum 
peak-to-peak amplitude from a Wood-Anderson instrument (Awa) subjected to the 
same ground motion were related by the equation 

Vma x ~- 0.77Awa (13) 

where Vma x is in centimeters/second, and Awa is in meters. The data leading to this 
correlation are shown in Figure 8. Most of the data are from events with magnitudes 
between 5 and 7. A similar one-to-one correlation between Vm~x and Awa has been 
found by Mahdyian and Singh (written communication, 1983) for smaller earth- 
quakes--aftershocks of the 14 March 1979, Petatlan earthquake in Mexico having 
local magnitudes between 1.0 and 4.0. The coefficient in their correlation, however, 
is 1.58 rather than 0.77. There is no inconsistency in this result, for the simulations 
are in excellent agreement with both observed correlations (Figure 9), indicating 
that a difference in coefficients is expected. The change from one correlation to the 
other occurs for earthquakes whose corner frequencies are near the Wood-Anderson 
instrument corner frequency. In judging the results in Figure 9 a caveat is in order, 
however: the simulations are for a suite of earthquakes at one distance, but the data 
are from earthquakes of various sizes recorded over a wide range of distances. Thus, 
some of the small motions in Figure 8 are from large earthquakes at great distances, 
rather than small earthquakes at close distances. Therefore, the spectral shapes 
and dominant frequencies of the data and simulations contributing to the same 
range of ground motions in Figures 8 and 9 may differ significantly. Analysis of 
more data close to large earthquakes will show whether this is an important effect 
or not. 

Because the Wood-Anderson response is obtained by multiplying the ground 
motion spectrum by the appropriate instrument response, and because the velocity 
and Wood-Anderson spectra have somewhat similar shapes for larger magnitude 
earthquakes {at least relative to acceleration and displacement spectra), it is natural 
to suppose that the relation Vm~ = 0.77 Aw~ may depend almost entirely on the 
instrument response and therefore have little value in discriminating among various 
source models. This supposition can be ruled out for several reasons. First, simply 
evaluating the ratio of the velocity and Wood-Anderson spectra at the instrument 
corner frequency yields Vma~ = 0.45 Awa. Second, and more importantly, the simu- 
lations from neither a coherent source model nor a stochastic w-cubed model (both 
described more fully later in the paper) lie on the Vmax = 0.77 A~ line (Figure 9). It 
is interesting to note, however, that all the models agree with one another at small 
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amplitudes, corresponding to small earthquakes. As shown in Figure 5, for these 
earthquakes the velocity and, in particular, the Wood-Anderson response has a 
simple pulse-like character. Therefore, the stochastic model should be expected to 
be similar to the coherent model for small earthquakes. 

South Africa data. The most important test of the simulation model is the 
demonstration that it predicts ground motions in agreement with data from poten- 
tially damaging earthquakes (generally, those with moment magnitudes larger than 
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5.0). Most of the data used in the model verification came from earthquakes in 
California. Checking the model against data from smaller earthquakes is of seis- 
mological interest, however. The South African data tabulated by McGarr et al. 
(1981) provides an interesting test of the model, for the data were from small 
earthquakes recorded in a mine within competent rock (# = 3.8 km/sec) in a 
different tectonic environment than California. McGarr et al. (1981) computed the 
peak accelerations and velocities of the vector motions from accelerograms high- 
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cut filtered at 400 Hz. For consistency with the data processing, the free surface 
(FS) and energy partition ( P R T I T N )  factors were taken as unity and the high- 
frequency cutoff (fro) was 400 Hz in the simulations. From McGarr et al. (1981) and 
McGarr (oral communication, 1983), fl = 3.8 km/sec and Q = 600. The simulations 
were made at a distance of 200 m, approximately the median distance for the data, 
and the data were normalized to that distance by assuming R-1 geometrical spread- 
ing. The comparison of the model predictions with the data are shown in Figure 10. 
A stress parameter of 50 bars was used, and no attempt was made to fine tune this 
parameter. This value of stress is in the middle of the range of stress drops 
determined for the events. In view of the scatter in the data and the simplicity of 
the model, the fit is very good. McGarr et al. (1981) also showed that the data could 
be fit by a simple source model--in their case by a coherent source model similar 
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to one to be discussed shortly. The stochastic model, however, gives a better 
simultaneous fit to both the peak accelerations and peak velocities, and predicts a 
stronger dependence of the peak velocity on moment magnitude, in agreement with 
the data. 

CONSTRAINTS ON /m AND THE w-SQUARED MODEL 

The bandwidth of the acceleration spectrum is controlled by the corner frequency, 
It, and, at least at close distances, by /~ .  The simulations have assumed that f~ is 
fixed, while /c varies according to equation (5). To illustrate the effect of Ira, 
simulations were made for/m = 7.5, 15, and 30 Hz (Figures 7 and 11). As expected, 
measures of ground motion dominated by frequencies significantly less than fm are 
not sensitive to f~ (e.g., vm~x in Figure 11 and the first three psrv curves in Figure 
7). The simultaneous fit of the model to both peak velocity and peak acceleration 
seems to exclude/~ as low as 7.5 Hz as an average value for the western North 
American data; the best fit is achieved with f~ near 15 Hz (Figure 11). At greater 
distances, the Q-attenuation may produce an effective/m less than this. 
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The effect of [m on peak acceleration is to produce an increasing difference in 
peak accelerations with decreasing magnitude for sites having different fm (Figure 
11). As pointed out to me by Hanks (oral communication, 1983), the aftershock 
data of the 1975 Oroville earthquake shown in Figure 6 show a similar divergence 
(excluding the biased values for M = 3.2), with the rock sites showing less magnitude 
dependence than the soil sites. Because the rock sites have a higher fm than the soil 
sites (Hanks, 1982), the data are in qualitative accord with the simulations. 

) IO 

Z 
0 
I.- 
Q/ 
to 

w I 

v 
,< 
LIJ 
0 . .  

OI 

I I I J 

0 I 2 3 
M 

b) to 

to 

E 

>- 

O .J 

ta9 
fl_ / 

_ _ l  I J 
0 --  I 2 3 

M 
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McGarr at al (1981),  and simulations (using [~ = 400 Hz  a n d  Aa = 50 bars). The simulations are 
represented by the smooth curves, the data by dots. 

The comparison between simulations and data indicates that many amplitude 
measures of strong ground motion are consistent with an w-squared model with 
constant stress parameter. Would another model do as well? The simulation method 
is not dependent on the specific model and therefore can be used to check any 
proposed model. No attempt has been made to do an extensive search of model 
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space, but for illustration I have considered the ~0-cubed model obtained by replacing 
(~0/w() 2 with (~/~)3 in equation (3). As expected, it is not possible to match both 
the acceleration and velocity data with this model; if the stress parameter is adjusted 
to produce a fit to the velocity, the extra factor of ~ / ~  in the denominator of the 
~0-cubed model leads to an underestimation of the peak acceleration (Figure 12). 
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FIG. 11. Magnitude scaling of simulated peak ground accelerations and velocities for three values of 
fro. The regression curves of Joyner and Boore (1981, 1982) are shown for reference. 

COHERENT VERSUS STOCHASTIC MODELS 

Although simple visual inspection of strong-motion records demands a stochastic 
source model (where I am lumping together source effects and any complexities 
introduced by the propagation path), the simulations were repeated with a coherent 
pulse based on the Brune (1970) far-field model. This comparison emphasizes the 
scaling of the peak motions with magnitude. The acceleration time series in the 
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"coherent model" (as defined here) corresponds to a doubly differentiated, filtered 
version of the far-field displacement pulse of Brune [1970, equation (37) with stress 
drop and source dimension variables replaced by seismic moment and corner 
frequency]. The displacement pulse is given by 

u(t) ~ Mofc2te-2~fctH(t) (14) 

where H(t)  is the unit-step function. The pulse is high-cut filtered according to 
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A scahng factor was used that brought the simulated peak velocities into approximate agreement with 
those from the data. Clearly, the v-cubed model cannot fit the peak acceleration and peak velocity data 
simultaneously. 

equation (4). For any magnitude, the amplitude spectrum of the coherent pulse and 
the ensemble average of the stochastic simulations are the same [given by equation 
(1)]; the difference lies in the phase spectrum. The scaling of peak acceleration and 
velocity with moment magnitude, based on the time-domain simulations, is shown 
in Figure 13. 

The scaling factor Mofc 2 in equation (14) controls the peak amplitudes of both 
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the velocity and acceleration traces for the coherent model. This means that for a 
fixed fm both Vmax and am,x scale the same way with magnitude (this was also 
predicted for the Brune model by McGarr et al., 1981). Furthermore, if the stress 
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drop is constant, equations (5) and (14) can be combined to predict the scaling 

(am::) 1 
log ~ ~ log Mo (15) 

and, using the definition of moment magnitude, the scaling for the coherent model 
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( a ~ )  ~ 0.bM (16) log Vmax 

[Herrmann and Goertz, 1981; however, predict log(a~J ~ 0.0M rather than 
log(am~x) ~ 0.5M for an o~-squared, constant stress drop, coherent model. This 
apparent inconsistency is explained by the high-cut filter they employed; the [~ in 
their model is not fixed, but decreases with increasing magnitude.] 

A good approximation to the scaling of peak motions can be derived analytically 
for the stochastic model. When frolic is large (a good assumption for the larger 
earthquakes), the results are 

log(a~ax) ~ 0.3M (17a) 

and 

1og(Vmax) ~ 0.bM (17b) 

(Hanks and McGuire, 1981, and Appendix A). 
The simulation results are generally in good agreement with the analytical 

formulas for both the stochastic and coherent models (Figure 13). Furthermore, the 
scaling of peak velocity is similar for both the coherent and stochastic models. In 
contrast to the coherent model, however, the stochastic model predicts that peak 
acceleration has a weaker dependence on magnitude than does peak velocity. This 
agrees with observational results, and corroborates the expectation that a stochastic 
source model is needed to explain high-frequency ground motions. 

The different magnitude scaling of the coherent and stochastic models is most 
likely due to the character of the waveforms. In the coherent model, the peak 
acceleration comes from a single sharp spike whose width is independent of 
magnitude. In contrast, the peak in the stochastic model can occur throughout a 
source duration Td that increases with magnitude. The constraint that the spectra 
for both models be the same then requires that the peak accelerations of the 
stochastic model increase less rapidly with magnitude than in the coherent model. 
In essence, the number of peaks contributing to the spectrum is fixed in the coherent 
model but increases with magnitude in the stochastic model. At first glance it seems 
that this would also be the case for the peak velocity. While this is true to some 
extent, the peak velocity of the coherent model is carried by a pulse whose width 
increases with magnitude. The same considerations also explain why the peak 
motions from the coherent model are larger than those from the stochastic model-- 
that are fewer peaks contributing to the spectrum in the coherent model. 

RANDOM VIBRATION THEORY 

Hanks and McGuire (1981) did not generate time series corresponding to a given 
amplitude spectra, as I have done. Instead, they used the following equation based 
on random vibration theory (Vanmarcke and Lai, 1980) to predict the peak accel- 
eration from the rms acceleration 

amax = [2 ln(N)] 1/2 (18) 
arm~ 
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where N is the number of extrema in a time interval T. Equation (18) is based on 
the assumption of a stationary time series with uncorrelated peaks, an assumption 
that is not strictly true in accelerograms. In general, 

N =  2IT (19) 

where [ is the predominant frequency of the motion (the constant "2" appears 
because two extrema are present in each cycle of motion, a factor sometimes 
overlooked--e.g., Udwadia and Trifunac, 1974, p. 213). Hanks and McGuire (1981) 
take 

[ = f m .  (20) 

Clearly, if equation (18)--or something similar--were adequate for the earthquake 
magnitudes of interest, its use would be preferable to the simulation method 
proposed here, at least for those applications not needing a time series. In this 
section, I compare the predictions from random vibration theory with the simula- 
tions. Several equations similar to equation (18) have been tested. Cartwright and 
Longuet-Higgins (1956) showed that equation (18) is an approximation valid for 
large N. For smaller N they gave an integral expression for the ratio of peak to rms 
[their equation (6.8)]. The integrand of their integral can be expanded by the 
binomial series and integrated term by term, yielding 

N E(amax) 7r ~ (_l) l+ 1 Cl N ~t 

arms --  /=1 ~ -  
(21) 

where E(amax) is the expected value of the largest of N acceleration extrema and 
Cl N are binomial coefficients (= N ! ) / I ! ( N  - l)!). ~ is a measure of the bandwidth of 
the spectrum, given by 

= m 2 / ( m o m 4 )  1/2 (22) 

where m0, rn2, and m4 are the zeroth, second, and fourth moments of the energy 
density spectrum, respectively; ~ approaches unity with decreasing bandwidth. The 
kth moment is defined as 

f0 °° 
1 wk [2 rnk = - [A(w) do~. (23) 
7~ 

For large values of N, Cartwright and Longuet-Higgins (1956; see also Davenport, 
1964; Clough and Penzien, 1975) derive the following asymptotic expression 

E(amax) 

arms 
- -  - [2 ln(N)] 1/2 + 3'/[2 ln(N)] 1/2 (24) 

where 3  ̀= 0.5772 . . .  (Euler's constant). This equation is a good approximation to 
equation (21), even for small values of N. Note that equation (18), used by Hanks 
and McGuire, is the first term of the asymptotic expansion; the error in ignoring 
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the second term is about 10 per cent for N = 20. Other equations relating rms and 
peak acceleration have been derived by Vanmarcke (1976) and Udwadia and 
Trifunac (1974); listed in Appendix B, they differ from the equations above by 
including a probability parameter so that confidence limits can be derived. Regard- 
less of the equation used, a .... N, and T must be estimated. For T, I use the earlier 
equation (6) equating T to the inverse of the source corner frequency. From 
Parseval's theorem, arm~ is given by 

ar,~ = (molT) 1/2. (25) 

Finally, equation (19) is used to estimate N. This in turn requires the predominant 
frequency f In equation (21), N is the number of extrema, and the appropriate 
frequency is 

1 
f = ~ (m4/m2) 1/2. (26) 

For the asymptotic form [equation (24)], N is the number of zero crossings, given 
by equation (19) with 

1 
} = ~ (m2/mo) 1/2. (27) 

The equations above show that after choosing the duration T, the relation between 
maximum amplitudes and rms amplitudes depends only on moments of the ground 
motion spectrum. There is nothing restricting their use to ground acceleration; in 
particular they can be applied to the ground velocity and response spectra as long 
as the basic assumptions of stationarity and uncorrelated peaks are not strongly 
violated. 

Although working in terms of the integral measures mk allows for generality in 
the random vibration predictions, analytical approximations can sometimes be 
made that are useful in predicting explicitly the dependence of the peak motions on 
the source parameters (as, e.g., Hanks and McGuire, 1981, have done for peak 
acceleration). This has been done in Appendix A for peak acceleration and peak 
velocity. 

Various measures of ground motion as predicted by the time series simulations 
and by the random vibration theory are compared in Figures 14 and 15. In general, 
the random vibration theory is adequate for predicting the ground motion. The 
divergences from the simulations occur when N is small (I have constrained it to 
be 2 or greater). The theory also begins to break down when the successive peaks 
are strongly correlated, in violation of an assumption made in the theory. These 
failures are of little consequence in most cases, however, and modifications to the 
theory that account for the specific shape of the window function could probably 
be made. The extensions of the theory to response spectra could also remove the 
uncertainty in specifying the duration of the oscillator response. Although for the 
computations shown in Figure 15 I have assumed it to be equal to the duration of 
the ground motion, the oscillator duration will be longer than that. The effect on 
predicted ground motion values of underestimating the response duration will be 
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most conspicuous when the oscillator periods are longer than the source duration 
(see note  1 added in proof) .  

T h e  conc lus ion  from all o f  this  is that  in m o s t  cases,  the  asymptot ic  formula 
[equation (24)] does an excel lent  job of  predict ing peak  mot ions .  It is conven ient  to 
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use the  random vibrat ion theory,  for it depends  on ly  on various m o m e n t s  of  the  
spectrum (and on a choice  of  T ) .  I t  is interest ing to note  that  the  equat ion used b y  
H a n k s  and McGuire  ( 1 9 8 1 ) - - e q u a t i o n  ( 1 8 ) - - w o r k s  as well as equat ion (24) for peak  
acceleration,  but for reasons  o f  serendipity: the  underes t imat ion  result ing from 
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using only the first term of the asymptotic expansion is compensated by an 
overestimation of the predominant frequency, and thus N. For the model parameters 
used in this paper, the predominant frequency estimated by equation (27) ranges 
from 13 to 8 Hz for a range of magnitudes from 3 to 7, when [~ = 15 Hz (the 
predominant frequency that would have been used by Hanks and McGuire). Al- 
though the errors in using only the first term of equation (24) and in estimating the 
predominant frequency by [m [i.e., equation (20)] can be several tens of a per cent, 
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the final estimates of peak acceleration differ by only several percent. Because the 
quantity rn2 need not be computed, the estimates of peak acceleration based on 
equations (18) and (20) are particularly convenient to use. 

DISCUSSION AND CONCLUSIONS 

A simple method has been proposed to simulate strong ground motions. The 
essence of the method is to generate a filtered, stochastic finite-duration time series 
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whose amplitude spectrum is equal, on the average, to a theoretical spectrum. To 
be useful, the theoretical spectrum and its scaling with earthquake size should have 
a sound physical basis. Although any spectral shape and scaling could be used, I 
have followed Hanks and McGuire (1981) in using an ~-squared spectrum with a 
high-frequency cutoff and a constant stress parameter. I have shown that this 
spectral model accounts for essentially all important measures of strong ground 
motion, measures based on the analysis of hundreds of recordings from earthquakes 
in western North America. The model is also in reasonable agreement with peak 
velocities and accelerations from small earthquakes recorded by McGarr et  al. (1981) 
in a South African gold mine (see note 2 added in proof). 

The model as given here may break down for predictions of motions close to large 
earthquakes, where the point source approximation is not valid and where the 
assumed spectral scaling with one low-frequency corner frequency is probably no 
longer appropriate. Recently, Joyner (1983) has devised a source scaling model that 
is intended to apply to large (as well as small) earthquakes. His model assumes 
geometrical similarity up to a certain critical earthquake size at which the rupture 
breaks the entire width of the seismogenic zone. Beyond that size, the fault length 
increases, but the width remains constant. For earthquakes smaller than the critical 
earthquake, Joyner's predictions of peak motions are similar to those from the 
model in this paper, the predicted motions from the two models diverge at larger 
magnitudes, with his predicted ground motion values increasing more slowly with 
magnitude. 

Although the point source approximation is justified for the comparisons with 
data made in this paper, its validity is difficult to assess for predictions of motions 
close to large earthquakes. In a sense, the decaying exponential in the window 
function can be thought of as accounting for the extra decay of motions radiated 
from farther regions of the fault, but modifications may be required for predictions 
close to extended faults. These modifications may amount simply to redefining the 
window based on a kinematic model of the rupture (e.g., Midorikawa and Kobayashi, 
1978), or to subdividing the fault into a series of equivalent point sources. 

Among other uses, the simulation method offers a way of predicting motions for 
a particular design earthquake from recordings of smaller events in the region of 
interest-- the small events being used to estimate the parameters fm and Aa. Such 
a use would be particularly valuable in the Central and Eastern United States, 
where recordings are usually available only for earthquakes with magnitudes smaller 
than the design earthquakes of important engineered structures. 

Although the simulation method is useful for applications requiring one or more 
time series, it is a cumbersome way of predicting various peak measures of ground 
motion. For this, I show that with the possible exception of small earthquakes, 
various formulas from random vibration theory are adequate for predicting peak 
values. These formulas are particularly convenient, for they only require various 
integrals of the squared amplitude spectra and an estimate of the record duration. 
Estimates of the ground motions can be derived from them at much less cost than 
they can from the time series simulations. 
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APPENDIX A: SCALING RELATIONS FOR PEAK ACCELERATION AND PEAK 

VELOCITY 

A simplified analytic form of the scaling of peak acceleration and velocity with 
moment magnitude can be derived easily from the equations in the section on 
random vibration theory. The equation for peak acceleration has been published by 
Hanks and McGuire (1981), and its derivation is repeated here for completeness. 
The goal here is to find the moment magnitude coefficients 7 in the equations 

log(amax) = 3'aM + ~a (Ala) 
and 

log(Vm~x) = "yoM + fly. (Alb) 

Only those portions of the intercept values ~ that depend on the stress parameter 
Aa will be estimated; distance-dependent terms will be ignored. This reduces the 
clutter in the ensuing equations and simplifies some of the integrations [for example, 
the Q-term in equation (1) can be ignored]. In predicting the absolute level of the 
peak motions, it is best (and easy) to numerically evaluate the integrals used in the 
random vibration theory. 

The simple asymptotic relation between the peak and rms motion given by 
equation (18) will be used, and equation (25) will be used to compute the rms. The 
basic task is to compute the integral measures mo, m2 for the acceleration and 
velocity spectra. This amounts to doing the integrals 

1 
+ (~/o~)2 j d~ (A2) 

where k = 0, 2 and 1 = 1 for velocity and l = 2 for acceleration. Defining x - ~ / W c ,  

the integral above can be rewritten 

~ Wm/~c xk+2 l 
( m k )  ~ ~ M o % c  ~+2l+1 ,~0 [1 + x2] 2 - -  dx. (A3) 
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Although this integral can be evaluated analytically, a simplification is possible 
when ~m/O~c >> 1: the I in the denominator can generally be ignored and then 

and, finally, 

Wrn/Wc 

(rnk)l ~ Mo2wc h+21÷l x h÷2~-4 dx (A4) 
~ 0  

(mk)~ '~ mJ,,,~ ~+~+~(~o~/~) ~+2~-~. (Aba) 

This equation is not valid for the zeroth moment (k = 0) of the velocity spectrum 
(l = 1), for then the superscript of x in equation (A4) is negative. In this case 
equation (Abb) must be replaced by 

7F 
(mo)l "-- ~ Mo2~c 3. (A5b) 

Using equations (25) and (6) and changing from radian frequency to the more 
familiar circular frequency, the dependence of the rms motions on Mo and fe then 
becomes 

and 

//f "~1/2 
a r m s -  Mofc31L-~. } (A6a) 

v ~  ~ M o L  2. (A6b) 

The estimate of the predominant frequency f comes from equation (27). For 
acceleration, 

and for velocity, 

f = fm (A7a) 

Using equations (18) for amaxla . . . .  equation (19) for N, and equation (6) for T, the 
estimates for ama, and Vmax become 

amax ~ Mofc3(f~/fc) 1/2 ~in(2[rJfc) (A8a) 

and 

(A8b) 
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The next step is to write [~ in terms of/140 and Aa [equation (5)]. Because the 
logarithm of equation (A8) is of interest, constant factors associated with the terms 
outside the square root can be ignored. Therefore 

1 5 1 [ (~(Mo11/3t] (A9a) 
log(a~a~) ~ ~ log Mo + ~ log Aa + ~ log In 2 \ ~ ]  ]J 

and 

1 2 1 [ (16 ~ (Mot'~31] 
log(v~ax) "~ ~ log Mo + ~ log Aa + ~ log In \ ~ ]  ]J (A9b) 

where ~ = 4.9 × 106fl [equation (5)]. The first and second terms give the scaling of 
the rms motions with Mo and Aa; the last terms give modifications to the scaling 

0 5  

~o4 

o 
" ' 0 5  

I--- 
~_0 

._1 

0 

fm = 15 Hz 

2 km/s  o -e~\/'5~1 
Ao- = O0 bars ~ S~' ~e -\/7~ 

. 

M=5 M=6 M=7 
, I , I I , 

25 24 25 216 27 
log M o 

FIG. At. Dependence of second term in equations (A9) on log Mo. 

due to the distribution of motions over a time interval. Following Hanks and 
McGuire (1981), the last terms on the right-hand sides of equations (A9) can be 
approximated by terms linear in log A~ and log M0. For example, the last terms 
have been plotted in Figure A1 as a function of log M0 for fm= 15 Hz,/3 = 3.2 km/ 
sec, and A~ = 100 bars. The term corresponding to peak acceleration has more 
curvature than that for peak velocity, but in both cases the terms can be approxi- 
mated by straight lines, as shown. Substituting these straight line approximations, 
and similar ones for the A~ dependence, into equations (A9) and using the definition 
of moment magnitude [equation (12)], the scaling of peak acceleration and peak 
velocity with moment magnitude and the stress parameter is given approximately 
by 

log(a~ax) ~ 0.31M + 0.80 log Az (A10a) 

and 

log(a .... ) ~ 0.55M + 0.64 log Aa. (A10b) 
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The  effect of  the  r andom process is to slightly increase and  decrease the dependence 
of peak  accelerat ion and  velocity on M and Aa, respectively, relative to the  scaling 
of the rms  motions .  The  largest  effect is on the  magni tude dependence of peak  
acceleration. Rounded  to one decimal place, the  first  t e rms  in equat ions (A10) give 
the  magni tude  dependence shown in equat ions (17) in the text.  

APPENDIX B: RANDOM VIBRATION THEORY EQUATIONS 

Udwadia  and  Tr i funac  (1974) gave the following equat ion for the m a x i m u m  
ampl i tude  t ha t  has  a probabi l i ty  p of  not  being exceeded 

a . . . .  P -- [-- 2 ln(1 --pl /g)] , /2.  (B1) 
arm~ 

The  corresponding equat ion f rom Vanmarcke  (1976) is 

amax,p _ [2 ln(n)[1 - exp(-5~ ~ ln(n)])] 1/2 
arm, 

(B2) 

where 

n --- N ( - l n  p ) - i  (B3) 

~e ~--- ~y12 

and 

5y = (1 - m12/mom2) 1/2. 

For  large N,  equat ions (B1) and  (B2) approach  

a . . . .  P - [2 In(n)]  1/2 
arm~ 

W h e n  p = l /e ,  this  is the same as equat ion (18) in the text.  

(B4) 

(B5) 

(B6) 

Notes Added m Proof" 
1 Recent work by myself and W. Joyner on an algorithm for choosmg the oscillator duranons leads 

to an improved fit between the time domain simulations and the random vibration theory shown 
m Figure 15. This work will be reported on in a later paper. 

2. In a paper recently submitted to the Journal of Geophyslcal Research, T. Hanks and I show that 
the model is consistent with the correlation between log Mo and ML from an extensive California 
earthquake dataset for 0 < ML < 7. 


