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THE EMPIRICAL PREDICTION OF GROUND MOTION 

BY DAVID M. BOORE AND WILLIAM B. JOYNER 

ABSTRACT 

Recent additions to the strong-motion data set, primarily from earthquakes in 
California and Italy, are responsible for a large number of papers examining the 
prediction of ground-motion measures using regression methods. Peak accel- 
eration is still the most common measure being considered, but increasing 
attention is being given to peak velocity and spectral amplitudes. Although 
direct comparisons among the studies are hampered by differing definitions of 
distance and magnitude, in general the various studies give similar answers for 
peak acceleration in the region of distance and magnitude space in which most 
of the data are concentrated. As might be expected, the differences are most 
pronounced for large magnitudes and distances close to the fault, where data 
are few. Even so, widely differing assumptions about the form of the regression 
equation and differences in the composition and weighting of the data set can 
give similar answers. This was true in recent studies by Campbell (1981b) and 
Joyner and Boore (1981), where the predicted accelerations for large earth- 
quakes at close distances differed by less than 40 per cent. This seemingly large 
uncertainty is small compared to the scatter in the data about the regression 
lines. A Monte Carlo study shows that the question of whether the shape of the 
attenuation curves is magnitude-dependent cannot be resolved by existing data. 

INTRODUCTION 

The old problem of predicting ground motions from earthquakes has been given 
new life by the demands of engineers and the increasing amount of data from within 
a few tens of kilometers of faults. This paper is a systematic review of the consid- 
erations needed in using the improved data set to derive curves or equations that 
can be used to make empirical predictions of strong ground motion. It is organized 
following the questions that are usually asked in deriving predictions: What will be 
the dependent and independent variables? What set of data will be used? What 
will be the form of the prediction equation (if any)? What analysis procedure will be 
used? Is the equation adequate? These questions may be obvious, but their answers 
are vital, especially when comparing various studies. For convenience, our review is 
illustrated by results and examples in a number of papers appearing in the December 
1981 issue of the Bulletin. In so doing, it is unavoidable that comparisons be made 
of the predictions of the various studies. Our intention, however, is to illuminate the 
issues involved and the logic used in making predictions rather than to pass 
judgment on the predictions. Detailed reviews of the many previous attempts to 
predict ground motion are not given here; a comprehensive summary is given by 
Idriss (1978). Because it is outside our area of expertise, we also give only brief 
attention to the important problem of predicting ground motions in areas such as 
the Central and Eastern United States; for this, see recent papers by Battis (1981), 
Campbell (1981a), and N,~ttli and Herrmann (1981). 

STUDIES USED FOR COMPARISONS 

Of the group of papers dealing with strong ground motion in the Bulletin's 
December 1981 issue, five are of primary concern to us because they presented 
empirical predictions of ground motion. Hasegawa et al. (1981) presented attenua- 
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tion relations for strong motion in Canada. Herrmann and Goertz (1981) were 
primarily concerned with a numerical study of ground motion scaling, but they did 
present prediction equations for the Central and Western United States. The 
attenuation equations in these two studies are based primarily on Murphy and 
O'Brien (1977). Joyner and Boore (1983) and the similar study of Joyner et al. 
(1981a) derived prediction equations using data from earthquakes in western North 
America. Campbell's (1981b) study is similar in scope, but he included data from 
significant earthquakes in other parts of the world. Both Joyner and Boore and 
Campbell included data from the 1979 Imperial Valley earthquake in their studies. 
Finally, Chiaruttini and Siro (1981) gave prediction equations from European strong- 
motion data. 

VARIABLES 

Dependent variables. The first thing to be decided is what variable is to be 
predicted. Peak ground acceleration is the usual choice, but a number of other 
descriptors of ground motion have been used recently. Among these are rms 
acceleration (Hanks and McGuire, 1981; McCann and Boore, 1982), peak ground 
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Fro. 1. Ratio of larger peak ground acceleration (PGA) on either horizontal component to mean of 
the two peaks. Points correspond to those recordings in the data set of Joyner and Boore (1981, Table 2) 
that  are contained in volume 1 of the series "Strong Motion Earthquake Accelerograms," published 
under the direction of D. E. Hudson by the Earthquake Engineering Research Laboratory of the 
California Institute of Technology. 

acceleration (Hanks and McGuire, 1981; McCann and Boore, 1982), peak ground 
velocity (Joyner and Boore, 1981b), response spectra of various sorts (McGuire, 
1974; Trifunac and Anderson, 1978; Joyner and Boore, 1982), and Fourier spectra 
(Trifunac, 1976; McGuire, 1978a). Because ground motions usually are recorded on 
three orthogonal components, a further needed decision is how to treat these three 
components. The motions in the horizontal plane are of greater engineering signifi- 
cance than those in the vertical direction, and therefore most studies have dealt 
with horizontal motions only; three approaches are common: (1) use the larger of 
either horizontal component; (2) use both components; or (3) use the mean of the 
estimates from both components. For peak horizontal acceleration, the first ap- 
proach gives numbers that are systematically larger than the third (and presumably 
the second) by about 10 :per cent (Figure 1). 

Independent variables. Ground-motion predictions are almost always a function 
of the independent variables earthquake size and distance to the source. Geologic 
conditions are sometimes considered as well. 

Although the measure of earthquake size is universally expressed by earthquake 
magnitude, the diversity of magnitude scales (Figure 2) can lead to confusion in 
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comparing various predictions. There  is a clear t endency  for all scales except 
moment  magnitude to reach a limiting value (saturate) as the size of the ear thquake 
increases. Because most  magnitudes are based on the peak ampli tude of an instru- 
mental  recording, one might expect  a good correlation of the ground-motion variable 
of interest with the instrumental  recording having similar f requency content.  For  
example, Boore (1980) found a strong correlation between peak velocity and peak 
amplitude of a Wood-Anderson instrument.  This  correlation, however, might not  
hold for ear thquakes with moment  magnitudes less than  about  5 or greater  than  7. 
A detailed discussion of this and other  correlations is beyond the scope of this paper; 
we point out, however, tha t  complications arise because of the broadband character  
of ground motion compared with the sometimes narrow-band ins t rument  output,  
and because of the stochastic nature  of large, extended ruptures  (McGuire and 
Hanks, 1980; Hanks  and McGuire,  1981). Whatever  scale is used, it is impor tant  to 
state the choice and be consistent in its use. We prefer moment  magnitude (Hanks 
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Fro. 2. Relation between moment magnitude and various magnitude scales: Ms (surface wave); mb 
(short-period body wave); MB (long-period body wave); ML (local); and MJMA (Japan Meteorological 
Agency). Dashed line shows a 1:1 relation for reference. Figure adapted from Heaton et al. (unpublished 
data, 1982). 

and Kanamori ,  1979) because it corresponds to a well-defined physical proper ty  of 
the source. Fur thermore ,  the rate of occurrence of ear thquakes  with different 
moment  magnitudes can be related directly to the slip rates on faults (Brune, 1968; 
Anderson, 1979; Molnar, 1979). 

After the size is specified, the next  independent  variable is the distance from the 
source to the station. Because rupture  surfaces for ear thquakes  can extend over 
tens of kilometers, a number  of distance measures are in use (Figure 3). Th e  measure 
used should depend on the application. The  most  common case, and the one of 
concern to us, is the use of previous data to predict  motions from future earthquakes.  
In many  applications, the fault can be identified but  the hypocenter  or sources of 
particularly energetic radiat ion cannot. In these cases, a measure based on the 
closest distance to the fault  (M4 or M5 in Figure 3) seems reasonable. Some have 
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argued that using a closest distance measure can lead to biased predictions, especially 
if the strong-motion stations have a nonrandom distribution around the fault and if 
the peak motions come from one small source on the fault (Shakal and Bernreuter, 
1981; M. D. Trifunac, oral communication, 1982). These conditions are not usually 
met; even if they were, however, the randomization introduced by considering an 
ensemble of earthquakes would help eliminate any bias. (In our view, the placement 
of recording instruments and structures are comparable sampling processes from 
the statistical point of view.) Of course, if the peak motions are radiated by a small 
area of the overall fault, using a shortest distance measure might give a distorted 
view of the attenuation of the motions from a particular event. An example of such 
distortion is shown in Figure 4. The decrease in attenuation near the fault shown in 
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FIG. 3. Distance measures used in prediction equations (from Shakal and Bernreuter, 1981). 
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epicenter (bottom, both from Shakal and Bernreuter, 1981). 
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the top box of Figure 4 has been predicted by some (e.g., Schnabel and Seed, 1973) 
as an effect of a change in geometric spreading from 1/R at large distances to 1 
when close to the extended rupture surface. On the other hand, Shakal and 
Bernreuter (1981) showed some evidence that the peak motions were not radiated 
uniformly over the whole fault plane. When the data are plotted against the distance 
to their suggested source (Figure 4, bottom box), the decrease in attenuation rate 
disappears. We believe that  attenuation curves based on the shortest distance to the 
fault will show flattening at close distances; this flattening is not due to a funda- 
mental change in geometric spreading, however, but is a result of the largest motions 
coming from stress release at depth, even if the fault breaks the surface. In effect, 
the source of motions is always at some distance from the recording stations. 

Another independent variable sometimes used in prediction studies is a measure 
of geologic material at the site. The usual measure is a binary classification into 
rock or soil. More refined methods for characterizing the site, such as using local 
shear-wave velocities and thickness of sediments for soil sites, might reduce the 
variance in the predicted motions (Joyner et al., 1981a; Rogers and Tinsley, 1982). 

DATA SELECTION 

Once the dependent and independent variables have been selected, a subset of 
the several thousand strong-motion records must be chosen for analysis. The choices 
usually center around avoiding biases and decreasing the scatter in the prediction 
equations. Biases and scatter can arise for many reasons. Among them are: including 
data from various tectonic provinces that may differ in rate of attenuation or source 
properties; differences in record processing (Figure 5); instrument depth and soil- 
structure interaction at the recording site (Figure 6); geologic effects not accounted 
for explicitly (Figure 7); azimuthal effects due to radiation pattern and source 
directivity; and poor knowledge of the location of the rupture surface. 

The set of data finally chosen can be conveniently displayed in magnitude- 
distance space (Figure 8). In general, the distribution of data is not uniform; small 
earthquakes do not trigger distant recorders, and, more important, few recordings 
have been obtained close to large earthquakes. 

THE REGRESSION MODEL 

Having chosen the data, the usual next step is to fit a model to the data. Why 
choose a model at all? Clearly, there would be no reason to if the requirement were 
simply to predict motions in a region of magnitude-distance space for which data 
were abundant. This is not usually the case, however. Predictions are often required 
where data are not available, e.g., close to large earthquakes. One strategy is to fit 
a functional form to the data, then use the resulting equation to predict the motions. 
The success of this strategy depends on the functional form's adequacy in describing 
the physics of the problem. There are other reasons for fitting a mathematical 
relation to the data even if magnitude-distance space is well represented by data. 
The resulting equations provide a convenient summary of the data for use in 
computer programs (e.g., when dealing with probabilistic ground-motion assess- 
ment) and are also useful in understanding the physical processes controlling the 
variations of ground motion (e.g., scaling with size or comparing attenuation rates 
in various tectonic provinces). 

The general form chosen by the various authors in the December 1981 Bulletin 
is 
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Y = b~eb~M[eb~D/Db~]eb~Sea~P (1) 

in which Y is the dependent  variable, M a magnitude, D a function of the distance 
measure, S a binary variable representing local site geology (0 if rock, I if soil), and 
P the uncertainty in the prediction (0 and 1 for 50 and 84 percentile values, 
respectively). The  b's are parameters  tha t  must  be determined from regression 
analyses. The  physical motivat ion for the chosen form is as follows: the exponential  
dependence on magnitude stems from the basic definition of magni tude as a 
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Fro. 7. Attenuation relations for data from Friuli, Italy, showing the tendency for motions on shallow 
soil sites to be larger than on either rock or deep soil sites (from Chiaruttini and Siro, 1981). Cutaways 
expose patterns on obscured fields. 

logarithm of a measure of ground motion; the distance dependence in brackets  
accounts for anelastic a t tenuat ion (b3) and geometrical  spreading (b4); the soil t e rm 
is arbitrary, but  agrees with the notion tha t  site effects should be multiplicative; 
finally, the uncer ta inty  follows from the assumption of a log-normal  distribution of 
the observations about  the regression line. Although the most  common, it must  be 
emphasized that  equation (1) is not  the only form possible. For  example, Idriss (oral 
communication, 1982) proposes a different relation tha t  may  provide a be t te r  fit to 
data from a wider range of magnitudes than  is usually considered (specifically, 



THE E M P I R I C A L  P R E D I C T I O N  OF G R O U N D  MOTION $49 

VOL I 
VOL 2 I 

0 
0 

PGA - VERTICAL 

o 

o oo  

oO 

I I I I I 

VOL 1 ACCELERATION (g) 0.5 

VOL I 
VOL 2 I 

PGA - HORIZONTAL 

° °  o o O o 
o o o 

I l I I I 

O0 VOL 1 ACCELERATION (g) 0.5 

FIG. 5. Ratio of peak ground accelerations (PGA) from volumes 1 and 2 of the series referenced in 
Figure 1 for vertical and horizontal components. Volume 1 data are unprocessed and digitized at unequal 
spacing (including peaks and troughs); volume 2 data have been interpolated to 0.02-sec spacing and 
corrected for instrument response. The bias is probably unimportant  for frequencies less than about 10 
Hz but is increasingly important as frequency increases (compare the higher frequency vertical data to 
the ',orizontal data). 

2.0 

1,8 

I 

o3  

1.6 

0 

1.4 

LOG RMS (H) VS DEPTH BELOW GRADE 

; I z J . . . . . .  • 
1.2 0 2 4 6 8 llO ~ li2 ll4 ll6 

DEPTH BELOW GRADE (METERS) 

FIG. 6. The dependence rms acceleration on embedment depth of instrument for data recorded in 
three small areas in Los Angeles during the 1971 San Fernando earthquake (from McCann and Boore, 
1983). 

[ ]  AREA I 
0 AREA 2 

0 A AREA 3 
[ ]  

© 
A %  
o [] zx 

A 
A 0 



$50  DAVID M. BOORE AND WILLIAM B. JOYNER 

7 - 

<><> 

6 - 
<24> 

I l l l l l  

1 

I I I I I I I  I I 1 

<> <> <> 
<><> <> 

O 4>,~ @ 4>4>~' 

I <>,@ ~1 .  ~,4:;~[@ 4 D  
~. @ ~.<)000 <:; , -@~@@(X:~.OO@ 

<> 

0 0 

<> 

<> <>0 

<><> <> 

I iOO i i I [ , ~ I I ~ A 1 A I  1 11 I l l l  I I I 
v ~ w v  v v 

10 100 

DISTANCE ( km ) 

FIG. 8. Distribution m magnitude and distance of the peak horizontal acceleration data used by 
Joyner and Boore (1981). Each point represents one recording. 
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earthquakes for magnitudes less than 5.0). The actual model used in the analysis is 
given by taking the logarithm of equation (1) 

log Y = Co + CMM -- C D D ( M )  - CLDlOg D ( M )  + c s S  + c p P  (2) 

where the c's are the coefficients to be determined. (Not all of these coefficients are 
used by all of the authors of the papers in the B u l l e t i n . )  The distance function D 
may contain coefficients, some of which may depend on magnitude. If it does not, 
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FIG. 10. Schematic showing the two-step regression procedure of Joyner and Boore (1981). The top 
figure shows the first regression, in which the shape of the dashed curve is varied, and all the data points 
from the i th  earthquake (contained within each enclosed area) are shifted by a distance Ai so tha t  the 
sum of the squares of the residuals is minimized. The bottom figure shows the second regression of the 
offset factors versus magnitude. An effect of the two-step procedure is to let each recording have equal 
weight in determining the shape, and each earthquake equal weight in determining the magnitude scaling. 

equation (2) provides a linear equation for the unknowns. This, of course, is one 
reason for the form chosen. A more important reason is that, in a general way, the 
form satisfies physical ideas regarding the scaling of ground motion with magnitude 
and distance. Some a p o s t e r i o r i  justification for fitting the equation to the logarithm 
of the dependent parameter comes from the log-normal distribution of the residuals 
of the data about the predictions (Figure 9). Although a normal distribution is not 
required for determining the coefficients through least-squares procedures, it has 
the convenience of allowing confidence limits to be assigned. 
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Another choice in deriving prediction equations involves the details of how the 
data are to be used in determining the unknown coefficients in equation (2). A 
potential for bias exists for two reasons: first, the data are not uniformly distributed 
in magnitude-distance space; and second, they may be dominated by many record- 
ings from a few earthquakes. It is possible to restrict the data sample further so that 
no more than a certain number of data points come from a given earthquake and a 
given recording site (McGuire, 1978b). Campbell (1981b) used a weighting scheme 
to reduce the bias, and Joyner and Boore (1981) used a two-step regression in an 
attempt to separate the attenuation and magnitude scaling (Figure 10). Other types 
of bias--e.g., that due to using a lower threshold acceleration in making up the data 
set--are discussed by Toro (1981) and Cornell (1982). 

T A B L E  1 

DEFINITION OF DEPENDENT AND INDEPENDENT VARIABLES 

Peak 
Study Acceleration* Magnitude Distance 

(y,) (M) (D) 
[ 

Hasegawa et  al. (1981) Not specified Not specified 
Herrmann and Goertz Not specified rnb 

(1981) 

Chiaruttini and Siro Larger ML 

(1981) 

Joyner and Boore (1981) Larger M 

Campbell (1981b) M e a n  ML, Ms~  

Hypocentral 
Epicentral 

Hypocentral 

[ d 2 + (hleh2(m-6))2] 1/2, d = shortest distance 
to surface projection of rupture surface 
( M 5  in  F i g u r e  3) 

R + h i e  h2M, R = shortest distance to rup- 
t u r e  s u r f a c e  ( M 4  in Figure 3) 

* In  reference to the peaks on each of the two horizontal accelerograms. 
t Campbell uses ML if both ML and Ms are less than 6.0 and Ms if both are greater than 6.0. Procedure 

is unspecified when the two measures are not both above or both below 6. 

T A B L E  2 

COEFFICIENTS OF REGRESSION EQUATION FOR PEAK GROUND ACCELERATION (IN g )  

Study c. CM CIj CLI~ hj (km) hz cl, 

Hasegawa et  al. (1981) - 1 . 9 9  0.55 - - *  1.5 - -  - -  - -  

H e r r m a n n  and G o e r t z  - 3 . 5 2  0.53 0.0 

(1981) t  - 2 . 3 2  0.53 - -  1.02 - -  - -  - -  

C h i a r u t t i n i  and Si ro  - 2 . 0  0.39 - -  0.9 - -  - -  0 .24 

(1981) (Friuli--all 
si tes)  

Joyner and Boore (1981) - 1 . 0 2  0 .249 + 0 . 0 0 2 5 5  1.0 (fixed) 7.3 0.0 (f ixed) 0.26 

Campbell (1981b) - 1 . 8 0  0 .377 - -  1.09 0 .0606 0.7 0.16 

* - - ,  coefficients not used or not given. 
t F i r s t  set of coefficients for R _--< 20 km, second set for greater distances. 

COMPARISON OF RESULTS 

The aforementioned comments apply to any definition of dependent variable, but 
for the sake of comparison, the rest of the paper will deal with peak ground 
acceleration. The authors of the papers in the December 1981 Bulletin used a 
number of different definitions for the independent variables. These are summarized 
in Table 1; Table 2 contains the coefficient values for the various prediction 
equations. Three of the five studies used the same model for the regression equation 
(Table 2). Campbell's model was similar to that used in the first three papers, but 
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his definition of distance contained two more  coefficients to be determined.  Joyne r  
and Boore 's  model  was the mos t  dissimilar, bu t  even it bore  some strong resem- 
blances to the other  four. 

Because the authors  of the papers  did not  use the same definitions for the  various 
variables, a graphical  compar ison requires certain assumpt ions  in order to reconcile 
these differences. This  has  been done in the comparisons  shown in Figure 11. (Not  
included are predict ions f rom H e r r m a n n  and Goertz, which are not  m e a n t  for 
western Nor th  America.) The  hypocente r  is assumed to occur at  7-km dep th  below 
the closest point  of the surface project ion of the rupture  surface to the station; wi th  
one exception, magni tudes  have been conver ted  to m o m e n t  magni tude  using the  
relations in Figure 2. The  exception is the pape r  by  Hasegawa  et  al., in which the 
type of magni tude was not  specified; in tha t  case no conversions were made.  T h e  
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FIG. 11. Comparison of peak horizontal acceleration predictions for various papers in the December 
1981 issue of the Bulletin of the Seismological Society of America. For the Campbell prediction, the top 
edge of the fault was assumed to be at 2.5-km depth for M = 5.5 and to break the surface for M = 6.0. See 
the text for other assumptions made (see Swanger et al., 1980 for a similar figure comparing earlier 
predictions). 

predictions based on using the peak  of bo th  horizontal  componen t s  s imul taneously  
(or the mean  of bo th  peaks) have  been increased to account  for the difference shown 
in Figure 1. T h e  results show tha t  th  e predict ions agree with one ano the r  be t te r  at  
30 km than  they  do a t  0 km. This  reflects the  relat ive lack of da ta  a t  close distances; 
at these distances, the predict ions are quite dependen t  on the  model,  especially for 
the larger magnitudes.  The  reason for the systemat ical ly  high predict ions of Hase-  
gawa et al. is not  clear. T h e y  relied heavily on M u r p h y  and O'Br ien  (1977), who 
included intensi ty in their  regressions, bu t  Hasegawa et  al. conver ted  intensit ies to 
accelerations. Cornell et  al. (1979) showed tha t  because of the  poor  correlat ions of 
intensi ty with acceleration, the use of an in te rmedia te  regression can bias the  final 
predict ion equation. 

Another  compar ison of var ious predictions, shown in Figure 12, puts  into per-  
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Joyner et al., 1981a, using local magnitude), and an envelope covering predictions for the Circumpacific 
Belt made by a number of authors (as given in Idriss, 1978). This figure was adapted from Chiaruttini 
and Siro (1981). As used by Chiaruttini and Siro, "Alpide Belt" seems to be loosely defined as the 
mountainous region extending from Italy (excluding Friuli) to Kashmir. 
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are raised by 13 per cent to compensate for the fact that he tGok horizontal acceleration as the mean of 
the peaks on the two horizontal components. Magnitudes at right ends of curves. 
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spective the recent predictions with respect to those based on older studies (which 
would be contained within the band labeled "Circumpacific Belt"). It also indicates 
that motions in some tectonic provinces may be systematically higher than in others 
("Alpide Belt" versus Friuli). Unfortunately, the validity of the Alpide Belt results 
is clouded by including distances and magnitudes of uncertain accuracy in the 
analysis [although Chiaruttini and Siro (1981) did make a special effort to use a 
consistent magnitude scale]. Furthermore, at least two of the accelerations in the 
Alpide data set came from vertical components. These also happened to be the 
largest accelerations in the data set; the proper values should have been: Karakyr, 
0.8 g and Naghan, 0.95 g (rather than 1.3 and 1.08 g, respectively; Ambraseys, 1978). 

Finally, a comparison of Campbell's and Joyner and Boore's predictions show 
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FIG. 14. Residuals of data about predictions: (top) from Joyner and Boore (1981); (bottom) from 
Campbell (1981b). Heavy dashed line in top graph marks 50-km distance from fault for ease in comparing 
with bottom residuals, which extend out to 50 km only. Campbell's residuals have been normalized by the 
standard deviation (0.16 log units). 

them to be quite similar, in spite of many differences in procedures and data set 
(Figure 13). The largest deviation between the curves corresponds to a factor of 
1.38, less than one standard deviation of the data about the regression line. In spite 
of the similarity of the absolute predictions, there are fundamental differences in 
the shapes of the curves; Campbell's have less curvature, and they depend on 
magnitude in such a way that the offset between the curves decreases as distance 
decreases. Joyner and Boore, on the other hand, used a model in which the shape 
is constrained to be independent of magnitude. We will focus on these differences to 
illustrate procedures for examining a model's adequacy. 



856  DAVID M. BOORE AND WILLIAM B. JOYNER 

ADEQUACY OF THE MODEL 

No empirical equation can be condemned on the basis of the steps used in its 
derivation. It does not matter whether the steps leading to the equation are logically 
defensible or not; lacking the means to subject it to the ultimate test (does it predict 
the future?), the model is best assessed by studying the residuals of the observations 
about the regression curve. Such residuals are shown as a function of distance in 
Figure 14. There is a hint of a systematic trend in Campbell's residuals (high at both 
ends, low in the middle), but the trend probably has no statistical significance. From 
this figure, we conclude that neither model has any gross inadequacies; to address 
the question of a magnitude-dependent shape we must resort to other comparisons. 
This requires studies not contained in the published papers, and therefore our 
discussion will now focus on the Joyner and Boore predictions. Similar studies have 
been made by Campbell and Niazi (1982). 

Before continuing, it is worthwhile pointing out the large scatter in Figure 14. For 
Joyner and Boore's data, the standard deviation corresponds to a factor of almost 
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FIG. 15. Residuals of peak horizontal acceleration with respect to the predictions of Joyner and Boore 
(1981) for recordings within 10 km of the fault. 

1.9; although not shown in the figure, the comparable number in Campbell's studies 
is about 1.5. McCann and Boore (1983) found factors of about 1.3 for motions 
recorded close to one another (within circles of 0.5 km radius) during the 1971 San 
Fernando earthquake. This latter factor shows that the scatter due to local geologic 
(and perhaps building) effects may be considerable. An important task for research 
is to separate the scatter due to geologic effects, which is potentially predictable, 
from that due to source effects. Unfortunately, there are indications that a significant 
amount of the scatter may be due to nonpredictable source effects. A scatter 
corresponding to a factor of 1.35 was found by Joyner and Boore (1981) in their 
second regression (see Figure 10); this is presumably due to variations in dynamic 
stress release in earthquakes. Somerville and Nelson (1982) attributed a large 
amount of the scatter in data from the 1971 San Fernando earthquake to source 
directivity effects. 

To return to the question of a magnitude-dependent shape, we note that  the mean 
square residual is dominated by the data at distances beyond 20 km or so and 
therefore is not sensitive to magnitude-dependent differences in shape, which are 
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most pronounced at  short  distances (see Figure 13). A be t te r  way to see if such 
magnitude dependence is demanded by the data  is to plot the residuals at  close 
distances as a function of magnitude; a correlat ion of the residuals with magni tude 
would indicate tha t  the basic assumption in the Joyner  and Boore model  (magnitude 
independence) is invalidated by the data. Such a plot (Figure 15) does show a t rend 
(and in the sense predicted by Campbell 's  study), but  the slope is controlled by  a 
single ear thquake and is marginally significant. 

A more powerful test  involves a Monte  Carlo simulation. This  is especially useful 
in nonlinear regression analysis, for it makes possible the derivation of confidence 
limits on the regression coefficients (Gallant, 1975); the confidence limits derived 
from standard linearized approximations are useless if the problem is strongly 
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square shows the (hi, h2) pair from analysis of the observed data. (a) Whole data set. (b) Data set 
excluding the 1979 Imperial Valley aftershock. 

nonlinear, as is the case for the regression performed by Joyner  and Boore.  Th e  
Monte  Carlo procedure is straightforward. We assume tha t  the derived predict ion 
equation (given in Table  2) is correct  and use it to generate a set of artificial data at  
magnitude and distance values corresponding to the data  set used in deriving the 
prediction equation. Random noise with the appropriate  variance is added to each 
value. The  resulting artificial data  set is then  subjected to the same regression 
analysis as was the observed data, with one crucial difference: the h2 coefficient in 
the distance definition (Table 1) is not  constrained to be zero; this allows for a 
magni tude-dependent  shape. This  procedure is repeated  many  times, and an (hi, h2) 
pair is derived from the observed data. If  the h2 value for the observed data  were 
nonzero but  within the range of values derived from the artificial data, then  we 
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could say that at a certain significance level the hypothesis of magnitude-indepen- 
dent shape (h2 = 0) could not be rejected. That is, it could well be by chance alone 
that the derived value of h2 differed from zero. The results of the Monte Carlo 
simulation are shown in Figure 16 for data with and without the aftershock of the 
1979 Imperial Valley earthquake. 

The value of h2 derived from the data is 0.3, implying a magnitude dependence 
similar to that found by Campbell. The simulations show that at least 20 per cent 
of the time, the derived h2 can be greater than or equal to 0.3, even if the real h2 
equals zero. Therefore, the data do not require a magnitude-dependent shape (h2 
# 0); neither, however do they reject it. 

The question of magnitude-dependent shape is affected by the definition of 
distance since large earthquakes break through to the surface and small ones may 
not. Restricting our remarks to the definition used by Joyner and Boore (1981), we 
see that the data are consistent with either magnitude-dependent or magnitude- 
independent shape. This leaves only general philosophical considerations (e.g., 
choose the model with the fewer free parameters) or theoretical considerations as a 
basis for deciding between the models. Theoretical considerations, however, may be 
of little help at present, for they depend on unknown aspects of the earthquake 
source process. For example, if one assumes that h [defined as h l e x p ( h 2 [ M  - 6.0])] 
should scale as the fault width, then the attenuation curve will have a magnitude- 
dependent shape up to the magnitude at which the fault width equals the width of 
the seismogenic zone and will have a magnitude-independent shape for higher 
magnitudes. If one assumes that h should scale as the fault length, then the 
attenuation curve will have a magnitude-dependent shape at all magnitudes. If, 
however, one assumes that h should scale as some characteristic dimension of the 
seismogenic zone or some parameter of the stress distribution in depth, then the 
attenuation curve will have a magnitude-independent shape. We know of no firm 
basis for deciding among these possibilities, but as Figure 13 shows, the correspond- 
ing differences in predicted acceleration are small. 

CONCLUDING REMARKS 

As we have shown, there are a number of options available in making empirical 
predictions of strong ground motion. To decrease confusion and the chance for 
misapplication, it is important that the choice of dependent and independent 
variables, as well as the data selection and analysis procedures, be clearly stated. 
Although these factors contribute to the scatter in predictions from various methods, 
we should not forget that a significant amount of variance in the residuals about the 
regression equations is undoubtedly due to things not accounted for in the model-- 
such as azimuthal, propagation, and site effects (e.g., see Boatwright and Boore, 
1982 and Mueller and Boore, 1982 for examples of azimuthal and site effects in the 
acceleration records of two recent California earthquakes). Sorting out these effects 
and reducing the variance is an important topic for future research. We are only 
now acquiring the data needed to carry out this task. 

Finally, the predictions that are most often of concern are for magnitudes above 
about 7 and distances closer than 25 km, for which we have few or no data. In this 
case, the empirical prediction of strong ground motion necessarily represents an 
extrapolation and is model-dependent. In the future, more data (although never 
enough) will be obtained in this critical part of magnitude-distance space, and better 
theoretical models will be available to guide us in our predictions. The prediction of 
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strong ground motions in western North America for earthquakes of magnitude less 
than 7 seems to be well understood; not only are the most recent empirical studies 
in substantial agreement with each other, but they are also in agreement with 
independently derived theoretical predictions {Hanks and Kanamori, 1981). 
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