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THE INFLUENCE OF R U P T U R E  INCOHERENCE ON SEISMIC 
DIRECTIVITY 

BY DAVID M. BOORE AND WILLIAM B. JOYNER 

ABSTRACT 

As has long been recognized in teleseismic studies, smooth rupture propa- 
gation significantly modifies the azimuthal variation in elastic wave radiation and 
introduces a dependence of peak motion on the ratio of rupture velocity to wave 
propagation velocity. Rupture propagation also has a first-order effect on the 
ground motions close to faults as calculated from models of coherent rupture. 
For engineering purposes, it is important to know whether the effect occurs only 
with coherent ruptures, or whether it is a more general phenomena of propagat- 
ing faults. This question was examined by both analytical and Monte Carlo 
studies of models of nonuniform ruptures. The principal models were defined by 
ruptures moving continuously in time along the fault with random variations in 
rupture velocity or in slip amplitude. These models were richer in high frequen- 
cies than the corresponding smooth ruptures. The randomness introduced a 

new corner into the spectrum at a frequency that is simply related to the 
coherence length of the random variations and to the azimuth between the fault 
and station. The lower frequency corner due to the overall rupture was pre- 
served. For the model with varying rupture velocity the azimuthal variation in 
spectral amplitude was enhanced over that for the smooth rupture. For the 
model with varying slip the azimuthal variation was the same as for a smooth 
rupture. These models showed directivity effects as strong or stronger than the 
corresponding smooth rupture, providing that the average rupture velocity was 
the same. Monte Carlo simulations with statistical models gave peak amplitudes 
with the same general dependence on rupture velocity as the peak amplitudes 
from smooth ruptures although in the mean the peak motions were enhanced in 
the incoherent model. An analytic expression was also derived for the mean 
spectrum of an extreme model in which rupture occurred in little patches 
distributed with complete randomness over the fault surface and in time. Even 
this model showed some effects of directivity. The results of our study are 
consistent with the interpretation that rupture propagation produces destructive 
interference in the radiated motion; incoherence reduces this interference and 
in general leads to higher peak motions and spectral levels. 

INTRODUCTION 

Smooth-rupture propagation can lead both to large azimuthal differences in the 
radiation of elastic energy and to significant sensitivity of peak motions to the 
ratio of rupture velocity and wave propagation velocity. Although this has long 
been recognized in applications at teleseismic distances (e.g., Benioff, 1955), the 
implications for the computation of ground motion close to faults are not as widely 
recognized, although the same directivity effects should be expected (and have 
been observed in model studies; see Archuleta and Brune, 1975). In fact, these 
effects can be so large that one wonders if they exist in the real world. For example, 
Figures 1 and 2, taken from a study concerning ground motions from the 1906 San 
Francisco earthquake (Boore, 1977), show a factor of 4 increase in computed ground 
motions around 5-sec period for a change of rupture velocity from 2 to 3 km/sec, 
and a 13:1 ratio in the peak motions expected ahead of and behind the rupture. 
Clearly these results, if real, constitute a first-order effect on the computations of 
design motions close to faults. 
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It is our feeling that such effects are held by many seismologists and earthquake 
engineers to be unrealistic, although there are few good data to test the predictions. 
Usually, appeals are made to incoherence of both the fault process and the wave 
propagation to reduce these effects. The presence of such incoherence is very 
reasonable, especially at the short wavelengths of interest to earthquake engineers. 
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FIG. 1. Theoretical body-wave recordings at  Lick Observatory  from a model of the 1906 earthquake 
on the San Andreas fault. The closest point of rupture and the shear velocity were 35 k m  and 3.3 
km/sec ,  respectively {adapted from Figure 8 in Boore, 1977; see Figure I in t ha t  paper for the geometry).  
Both  near- and far-field terms were included in the calculations, but the near-field terms contributed 
little to the motion at these frequencies. 
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FIG. 2. Body waves from the same faulting used in the computations of Figure 1, showing the separate 
contributions of the segments to the north and south of the epicenter off the Golden Gate, near San 
Francisco. The total dislocation on each segment was the same. The stopping phases from the northern 
segment are not shown, but are smaller than the motions illustrated, r. 1. stands for rupture length. 

Our aim is to study the effect of such incoherence on the radiated motion. This 
study differs in several essential ways from previous work dealing with variable 
rupture properties. We are concerned with the azimuthal variation of ground-motion 
amplitude and thus do not average over azimuth, as was done by Haskell (1964, 
1966) and Blandford (1975). Furthermore, we introduce the randomness into the 
model in a more physical way than did Aki (1967, 1972) or HaskeU (1964, 1966), 
who specified autocorrelation functions. 
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We start by reviewing the effects of smooth rupture. This serves as a basis of 
comparison for the main part of the paper in which the expected value of the 
radiation from nonuniform faults is computed both analytically and from Monte 
Carlo simulation. Most of the analysis is concerned with unilaterally propagating 
faults along which the slip and rupture velocity vary according to some probability 
distribution. For such a fault randomness is superposed on a uniformly propagating 
rupture. We also give brief consideration to radiation from a fault in which slip can 
occur at any time with equal probability at any point on the fault; this is the most 
random rupture we can imagine. 

EFFECT OF RUPTURE PROPAGATION: REVIEW 

Before describing our statistical model, it is useful to review the basic effects of 
smooth rupture propagation. In an infinite uniform, isotropic and elastic medium, 
the displacement from a small rectangular fault in which rupture starts at one end 
and propagates smoothly is given by 

R( O, e~) Mo ( D( t) , S( t;, AtL ) B( t;, Atw) ~ 
u -  4~rpc~ r 1. Do AtL * ~t-~ J (1) 

in which u is a given component of the P or S wave iaccording to the choice of the 
material velocity c and the radiation pattern RiO, 0)), r is an average distance 
between the fault and station, M0 is the static moment ( = ItDoLW), D(t) is the 
source time function, with static amplitude Do (assumed to be constant over the 
fault surface), p is density, and Bit; At) is a boxcar function of duration At and unit 
height; the duration htL and htw are the differences in arrival times for energy 
coming from either end of the fault (htL) or from the upper and lower edges (htw), 
assuming a step source time function, and the symbol * is the convolution operator. 
(See Savage, 1971; Geller, 1976; for a better model of an extended rupture see 
Savage, 1966 and the comments in Boore and Stierman, 1976.) We have neglected 
near-field terms in the equation above and have assumed that the source dimensions 
are small compared to r. 

In order to isolate the effect of rupture propagation, we consider (1) SH motion 
only, in the orthogonal plane bisecting the fault along its length and (2) a step 
source time function. For a narrow fault and at distances several fault lengths away 

and equation (1) simplifies to 

coso  
AtL = L -~ ] (2) 

cos 20 Mo B( t, AtL ) 
u(t) 4~rpfi 3 r AtL (3) 

0 is the angle between the strike of the fault and the line connecting the epicenter 
and the observation points. If the waves propagate out of the perpendicular bisecting 
plane of the fault, the cos O/fl term in equation (2) should be replaced by the 
apparent slowness of the wave in the direction of rupture propagation. This can 
reduce the effective Mach number, particularly for teleseismic body waves from 
vertical faults. 

The Fourier amplitude spectrum of u(t) is given by 

Icos 201Mo isin wAtL/2 I 
U(w)= 4~pfl 3 r [o~AtL/2[ (4) 
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In the discussion below, the point source radiation pattern, Icos 20[, will be ignored, 
leaving azimuthal variations only in the dependence of 5tL on 0. The envelope of 
the spectrum is sketched in Figure 3 for several O's and several Mach numbers ( V! 
fi = Mach number). As is well known, the effect of rupture is to produce destructive 
interference and therefore reduce the high-frequency motions by introducing a w-1 
roll-off beyond a corner frequency which depends on 0 and V/ft. An upper bound to 
the spectra is given by radiation from a point source with the same moment, for 
then htL ~- 0 and the radiation will be an impulse with a flat spectrum. For extended 
ruptures, a fiat spectrum is produced at particular azimuths for supersonic Mach 
numbers (0 = 0 ° for V/fi = 1 and 0 = 90 ° for V/fi = ~). 

For a given Mo, the output of an instrument whose high frequency cutoff is at 
frequencies lower than the corner frequency will not depend on rupture velocity or 
0 (in effect, the ground displacement looks like an impulse). On the other hand, 
the propagation effect will produce significant azimuthal variations and sensitivity 
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FIG. 3. The effects of directivity on the seismic spectrum, showing the variations with azimuth and 
Mach number. The lines shown are the spectral envelopes formed from the low- and high-frequency 
asymptotes. 

of the amplitude to Mach number in the output from higher frequency instruments. 
Note that htL and M0 are both proportional to L, and therefore the amplitude of the 
ground displacement will not depend on the fault length. This explains why the 
peak amplitudes in the seismograms in Figure 2 are virtually identical for fault 
lengths ranging from 300 to 2 km. (In this case the corner frequency associated 
with even the 2-km rupture is less than the resonant frequency of the 5 sec, 
underdamped instrument.) 

The rupture factor which controls the amplitude is plotted in Figure 4. From 
this we see that  the azimuthal and Mach number sensitivity of the amplitudes is 
most pronounced for azimuths in the direction of rupture propagation. The effect 
of rupture propagation is often referred to as directivity (Ben-Menahem, 1961) and 
is sometimes described as focusing energy in the direction of rupture propagation. 
This can be misleading, for compared with radiation from a point source with the 
same moment, the waves from an extended rupture are always smaller in both the 
amplitude and frequency domain. Rather than focusing, the effect of rupture is to 
produce destructive interference. The destructive interference is greater at back 
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azimuths, however, and thus it appears that energy is being focused on a forward 
direction. 

I N C O H E R E N T  R U P T U R E  

The statistical model. What is the effect of nonuniform rupture? From the 
discussion above, there will be less destructive interference and, in general, the 
amplitudes of the waves, especially at high frequencies, will be increased at all 
azimuths. To study these effects quantitatively, we model the rupture as unidirec- 
tional propagation along a fault subdivided into segments which are triggered 
sequentially by the rupture front. Each segment corresponds to the idealized model 
of the previous section, with the length, total slip, and rupture velocity for each 
segment (/, d, and v, respectively) chosen statistically from probability density 
functions. (Lower case letters represent segment parameters; upper case letters 
correspond to parameters for the whole fault.) The rupture moves continuously in 
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FIG. 4. The dependence of the direct ivi ty on Mach number and azimuth. The peak motions are 

proport ional  to the ordinate. Note the disproport ionate change going from azimuths of  0 ° to 90 ° 
compared to that  f rom 90 ° to 180% 

time along the fault. To isolate the rupture effect, we assumed constant width, W, 
and a step source time function. From this description, it is easy to do computer 
Monte Carlo simulations of the waves from this fault, using a random number 
generator. It is also possible to find an expression for the mean spectra, averaged 
over the ensemble. Both approaches have been used here. 

Lacking information to the contrary, for simplicity the probability density func- 
tions for the rupture velocity and dislocation have been taken as rectangular 
distributions. More generality could be obtained by using the fi distribution (Ang 
and Tang, 1975, p. 129). The probability function for segment lengths was assumed 
to be an exponential distribution, with a mean length 1. With that assumption, the 
occurrence of transitions from one fault segment to the next is governed by a Poisson 
distribution, and the process is highly irregular. 

In common with other dislocation models, our source is unrealistic because of the 
presence of stress singularities. We could impose a smoothness constraint on 
the dislocation amplitudes to guarantee nonsingular stresses. Doing this would 
probably not influence the general conclusions of this paper, however, and therefore 
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we have kept the simple model. Das and Aki (1977) have studied the radiation 
from a model in which stresses vary along the fault, and some of the features they 
see, such as increased high frequencies, especially in the forward azimuths, and 
insensitivity of the low frequency corner to the statistical variations, agree with 
our findings. 

It is interesting to note that the variation of rupture velocity we have chosen is 
consistent with some recent ideas concerning source mechanics. Madariaga (1977) 
points out that a sudden change in rupture velocity is expected whenever a rapid 
change in the strength of the fault is encountered. Furthermore, Nur {1978) argues 
that frictional stresses vary along rupture surfaces with a statistical distribution 
similar to the one we have used for our segment lengths. 

Mean spectra. We have chosen to concentrate on the spectra of the waves rather 
than the peak motions. This is both because the peak motions are usually a function 
of instrument type and thus only provide information about a narrow frequency 
band and because it is easy to study the expected value of the spectra using 
established statistical techniques. 

Although the Monte Carlo approach above is an easy way to generate a suite of 
ground motions, it is a cumbersome way of studying the statistical mean of the 
process. In our case we are able to derive an analytic formula for the mean spectrum 
corresponding to an approximation of the statistical model described above. The 
time series from the statistical model will be a series of adjacent box functions as 
shown in Figure 5. With the assumption that the amplitudes of adjacent boxes are 
statistically independent, that the duration of each box is given by an exponential 
probability distribution, and that the average duration of each box is short compared 
to the overall duration of faulting as seen at the receiving station, the mean spectra, 
U, of the process is given by 

[cos 201 Mo (j1~)1/2 
U(6o)- 4~rpfl3 r 

(5) 

where 

1 ] ~' sin2(c°AtL/2) t 1 
(~05tL/2)2 + 2 2 ~ L  + ~ ) 2  • (6) 

J 

(See Appendix A for the derivation of this and a more general expression.) In the 
equation, & and o, are proportional to the mean and standard deviation of the 
amplitudes, respectively, and t is the mean duration of the box functions in Figure 
5. htL is the overall duration of faulting, as given by equation (2). The moment ~/o 
is defined later. 

The equation for E shows that  the mean spectrum is the sum of a deterministic 
part [compare the first term with equation (4)] and a statistical part. This is in 
keeping with our fault model, which is deterministic in the sense that  it is a 
unilateral rupture with a given average length and average rupture velocity. Both 
terms approach constant values at low frequency, and decay as ~-1 at high frequen- 
cies. The corner of the random part of the spectrum is at a higher frequency than 
that from the deterministic part, and if the condition 

-=- ~2 (7) 
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is satisfied, the random part of the spectrum will dominate at high frequencies. 
The result is an enrichment of high frequencies and the appearance of two spectral 
corners; one associated with the rupture over the whole fault length at the mean 
velocity, and the other, at higher frequencies, related to rupture over the coherence 
length 1. It is the preservation of the lower frequency corner associated with rupture 
over the whole fault that makes our spectra different than that of Aki (1967, 1972) 
and Haskell (1964, 1966). The effect of the two corners is to introduce a spectral 
decay with intermediate slope between the w ° and ~0 -1 low- and high-frequency 
asymptotes. With our assumption that the coherence length is significantly smaller 
than the fault length, the low-frequency limit of ~' is unity and the spectrum 
approaches that of a smooth, coherent rupture. 

To illustrate the effects of statistical variations in fault parameters, we must 
specify the azimuthally dependent quantities &, oa, and t [AtL is given by equation 
(2)] in terms of the statistics of the slip, rupture velocity, and segment lengths of 

-1 
0 1 sec Z~tL 

FIG. 5. A typical ground displacement wave form for the incoherent model of rupture discussed in the 
text. The dashed line is the correponding wave form for a smooth rupture with the same moment. 

the fault. The equations connecting the fault parameters and the ground parameters, 
for the ith fault segment, can be found from equations (2) and (3) 

a i  ~- d i (  1 / v i -  cos ~//~)-1 (8a) 

ti  = li( 1 / V i  - -  COS ~/~ ). (8b) 

Since d, l, and v are random variables so are a and t, and the expected values of the 
ground-motion parameters &, oa, t can be determined using the equations above 
and the statistics of the fault parameters (because of the independence of parameters 
from segment to segment of the fault, we have dropped the subscript i). For example 

(9) 

where pt, pv are the probability density functions of the segment length and rupture 
velocity, respectively (Ang and Tang, 1975, p. 196). For our assumed rectangular 
distributions for v and d, and the exponential distribution for l, it is easy to evaluate 
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the integrals and obtain analytic expressions for &, aa, and t which have as parameters 
the upper and lower limits of fault slip and rupture velocity, the mean coherence 
length, and the azimuth from the fault strike. Much of the effect of the random 
fluctuations in the fault parameters can be understood by studying ~t, aa, and 
directly, even though these quantities were introduced in an intermediate step in 
the evaluation of the mean spectrum. We have chosen to isolate the cases of 
constant rupture velocity and variable slip, and variable rupture velocity and 
constant slip. In each case the mean rupture velocity was taken as 2.5 km/sec 
(compared to a shear velocity of 3.3 km/sec), the mean slip was 1.0 unit, and the 
mean coherence length was 1 km. The overall fault length was 30 km. Figure 6 
shows the results as a function of azimuth. For comparison, the smooth rupture 
without statistical fluctuations predicts the same ~ as the case of constant rupture 
velocity and variable slip. For variable slip, the ratio aa/& does not decrease with 
azimuth, and we would predict from equation (5) that  the high-frequency spectral 
levels would be increased at all azimuths relative to the case of smooth rupture. In 
contrast is the expected behavior for variable rupture velocity and constant slip. For 
most azimuths, aa/h is small and therefore the statistical variations in fault prop- 
erties will have a minor effect on the mean spectrum. It is only for angles near 8 =- 
0 ° that  aa/~t is large, and therefore the mean spectra will be increased at 
these azimuths compared with a smooth rupture. In this case, then, the effects of 
directivity will be enhanced compared to a coherent rupture. Another effect pre- 
dictable from Figure 6 is the relative smoothness of the mean spectra. The presence 
of incoherence leads to shifting spectral holes in the individual members of the 
statistical ensemble. In general, the greater the incoherence, the more shifting of 
holes, and the smoother the resulting mean spectrum. Thus, at azimuths away 
from 0 ° we would expect the mean spectra for the case of variable rupture velocity 
to be more jagged than those due to variable slip. On the other hand, the opposite 
should be true for azimuths close to 0 °, where O'a for the variable rupture velocity 
case increases rapidly. 

In Figures 7, 8, and 9 we show mean spectra that illustrate some of the comments 
made above. Figure 7 shows the spectra at forward and back azimuths (8 = 0 ° and 
180°). The predictions about relative smoothness are clearly borne out, as are the 
expected azimuthal differences. Note that  the spectra for the variable slip, constant 
rupture velocity case are increased relative to smooth rupture by about the same 
factor at both azimuths. In contrast, the variable rupture velocity case leads to a 
large increase in directivity. This is seen more clearly in Figure 8, which shows the 
spectra for the three cases at azimuths of 0 °, 90 °, and 180 °. From this we can say 
that rather than reduce the effects of directivity, random variation of fault param- 
eters may enhance the azimuthal variations of the mean spectra from a unidirec- 
tional fault. 

The effects of coherence length are shown in Figure 9. As expected, the spectral 
corner and thus the high frequency energy increases with decreasing coherence 
length, with a flattening of the spectrum between the corners associated with the 
overall rupture length (f--  0.11 Hz) and the coherence length (f = 0.3, 1.4, 2.9 Hz 
for 7 = 5.0, 1.0, 0.5, respectively). 

There are two problems with our derivation of the mean spectrum for the case of 
variable rupture velocity. The first is that although we assumed an exponential 
distribution for t, equation (8b) shows that the probability density function for t will 
be a combination of an exponential distribution for l and a rectangular distribution 
for v. The mean and standard deviation of an exponential distribution are equal, 
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but Figure 6 shows that  ot and t may differ by 40 per cent for the cases considered 
here. Statistical tests, however, show that  for our purposes the assumption of an 
exponential distribution isn't too bad, especially if we use the mean of t and ht in 
place of t in equation (6). 

The second problem with the formula for the mean spectrum when variable 
rupture velocity is allowed is related to the low frequency limit. For any given 
member of the ensemble we expect the low frequency limit of the spectrum to be 
independent of azimuth and rupture velocity (ignoring radiation pattern terms) 
and to be proportional to the moment M0 = ttd L W. Thus, the ensemble average 
should have the same property. In our equation (5) this isn't the case. The main 
reason for this is that the amplitude, a, and duration, t, of each box are assumed to 
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FIG. 6. Azimuthal variation of the mean height and duration of the square waves of Figure 5, and 
their standard deviations, for the statistical models shown in the legend. The numbers separated by a 
slash in the legend refer to the upper and lower bounds of the random variables rupture velocity (v) 
and dislocation (d). The mean coherence length was taken as 1 km and the total fault length was 30 
km. 

be independent, although their product should equal dl. Treating a and t as independ- 
ent statistical variables, however, means that the directivity terms involving rupture 
velocity (1 / v  - cos O/fl) will not cancel [see equations (Sa) and (8b)] and the product 
is then a function of azimuth and rupture velocity. Because of this, the mean 
moment in equation (5), defined as 

Mo = I~W(LIb&7 (10) 

will depend on azimuth and rupture velocity. In the results here, we normalize the 
spectra to unity at zero frequency to avoid this second problem. In the case where 
velocity is constant but slip varies, neither of the problems arise, and equations (5) 
and (6) hold without qualification. 
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FIG. 8. Similar to Figure 7, but showing the directivity effect for each type of randomness separately. 
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To assess the importance of the limitations just described, a Monte Carlo com- 
puter simulation was performed. Twenty spectra were generated, and the square 
root of the mean square amplitude spectrum was formed at each frequency to 
compare with the analytic results. The case of constant rupture velocity, variable 
slip was first simulated to check the basic derivation of equation (5) and the ability 
of the Monte Carlo technique to give reliable mean spectra based on 20 ensemble 
members. The results, shown in Figure 10, are sufficiently close to the analytical 
results for us to be confident of our method. As an aside, note the scrambling of 
spectral holes. Hanks (1972) noted this in a similar study and pointed out the 
difficulty of using such holes to infer rupture parameters (the corner frequency 
seems to be a more stable parameter). 

The simulation of the constant slip, variable rupture velocity case is shown in 
Figure 11. Nearly identical results were obtained from another simulation with a 
different seed for the random number generator. Clearly, the analytical formula is 
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FIG. 9. The influence of coherence length on the mean spectrum for the fault with random variations 
of rupture velocity between 1.8 and 3.2 km/sec. Note the flattening of the spectrum due to the increase 
of the corner frequency associated with the coherence length. 

completely satisfactory at azimuths of 90 ° and 180" (as expected), and is an adequate 
approximation at 8 -- 0 ° for the purpose of studying the general influence of various 
kinds of statistical rupture parameters on the radiated field. 

Summary. The effect of coherent rupture propagation is to smooth the radiated 
waves and consequently reduce high frequencies. The effectiveness of the reduction 
depends on azimuth. For supersonic rupture, there is always an azimuth along 
which no destructive interference occurs ( 8  = 0 ° for V-- fl, 8 = 90 ° for V = ~). 

The effect of incoherence is in general to increase high-frequency spectral ampli- 
tudes by adding a spectral corner, related to the coherence length, at higher 
frequencies than the corner due to the overall rupture length. The amount of 
increase depends on azimuth if the incoherence is due to variable rupture speeds, 
with virtually no increase at back azimuths but a large increase at forward azimuths. 
If, on the other hand, the incoherence is due to variable fault slip the increase is 
the same at all azimuths with the result that the ratio of spectra at various azimuths 
is similar to that produced by smooth coherent rupture. 

Peak amplitudes. Although we have concentrated on the spectrum of the radiated 
energy, the Monte Carlo method can also be used to study peak amplitudes. As an 
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example, Figure 12a shows the dependence of the peak amplitudes of the wave 
forms in Figure 2 to variations in the mean rupture velocity. An ensemble of 20 
runs was used to generate the results. The upper limit of rupture velocity was 
fixed at 3.2 km/sec, and the lower limit was decreased such that  the mean velocity 
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FIG. 10. Monte Carlo simulation of the spectra at a forward azimuth for the model with variable 

fault slip and constant rupture velocity. The lower set of curves show the 20 individual spectra comprising 
the ensemble. At the top, the mean spectrum of this ensemble (solid line) is compared with that 
computed from equation (A4). 
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FIG. 11. Comparison of the mean spectra from the Monte Carlo simulations (solid lines) and the 

analytical formula {dashed lines) for the fault with variable rupture velocity and constant slip. 

was lowered. For comparison, the dashed line shows the corresponding rupture 
velocity sensitivity of the peak motions for smooth rupture. The peak motions 
from the statistical model are similar to those predicted from a smooth rupture 
except at slow mean rupture velocities, where the peak motions are biased to high 
values by the fault segments with rupture velocities close to the shear velocity. A 
similar dependence of amplitudes on rupture velocity can be generated from the 
equations for 5 (Figure 12b). In this case & is the mean amplitude of the ground 
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displacement for the idealized fault model discussed earlier, not the mean of the 
peak amplitudes of the motion. In spite of the difference in definition, the sensitivity 
to rupture velocity is similar and suggests that the addition of randomness to the 
faulting process can lead to larger motions than would be produced by smooth 
rupture. This is contrary to the intuitive feeling sometimes encountered that the 
incoherence should decrease the peak motions. It must be remembered, however, 
that coherent rupture propagation leads to destructive interference. Any incoherence 
will tend to destroy this interference, with the result that spectral levels and peak 
motions will, in general, be larger than is the case of smooth rupture. It should be 
noted, as did Brune (1976), that the incoherence may come from variable wave 
propagation velocities in the fault zone rather than from variable rupture speed. 
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FIG. 12. Amplitudes as a function of mean rupture velocity. (A) Peak amplitudes, NS component of 

the instrument output for the model used in Figure 2 (southern segment), using a Monte Carlo simulation 
of 20 runs. Bars show 1 S.D. (B) Mean amplitudes for the types of wave form shown in Figure 5 (no 
instrument response), scaled by an arbitrary factor for comparison with (A). In each case the slip was 
constant and the rupture velocity varied between a fixed upper limit of 3.2 km/sec and a variable lower 
limit. In both (A) and (B) the results from the irregular faulting are compared with those from smooth 
rupture with properties equal to the mean of the irregular faulting parameters. 

OTHER TYPES OF INCOHERENCE 

The faulting discussed so far was deterministic in the sense that the rupture was 
unidirectional with a mean velocity, and the directivity effects expected for smooth 
rupture persisted even when randomness of the fault parameters was introduced. 
In order to neutralize the directivity effects it would seem that the assumption of 
unidirectional rupture with a monotonic sequence of triggering the adjacent fault 
segments must be abandoned. Going to the opposite extreme, we determined the 
mean spectrum for a fault in which rupture can occur randomly in space and time 
on the fault surface. This model is as close as we can come to purely random 
rupture. The resulting spectrum, given in Appendix B, is identical to the spectrum 
produced by instantaneous faulting with a ramp source-time function, and therefore 
directivity effects are still present, although the azimuthal differences are generally 
confined to a narrower range of angles than for unidirectional rupture. To completely 
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eliminate rupture directivity, it would be necessary to abandon not only unidirec- 
tional rupture, but also rupture on an extended planar surface. 

For the discussion so far we assumed a step function for the time history of fault 
slip, but we expect finite rise times in reality. This will generally introduce a ~-1 
decay in the spectrum, but if the particle displacement is jerky the effective corner 
beyond which the spectrum falls off at ¢ - '  may be at higher frequencies than 
expected for a smooth source-time function. The analysis of the effects on the 
spectra from a partially incoherent source-time function is similar to the derivation 
of the mean spectrum in equation (6), with the exception that directivity effects 
are not present since the rise time of a point on the fault as perceived at a station 
will not depend on azimuth. 

The combination of randomness in the rupture propagation and in the source- 
time function can lead to a spectrum whose apparent high-frequency decay in the 
range of observational frequencies is less than the ¢0 -3 decay given by most coherent 
source models (~0 -1 from length, width, and rise time). Our statistical source model 
may then include the best features of the ~-3 model of Geller (1976), who included 
the effect of fault width, and the w-2 model of Aki (1967), who did not, but who 
argues that the w-3 model does not fit the data. The choice between the ¢o -2 and 
~-3 models on the basis of data such as M~ - m b  and M0 - M~ relations is, in our 
opinion, not resolved at this time, and we defer further discussion to a later paper 
dealing specifically With the implications of our model on teleseismic spectra. 

DISCUSSION 

This paper was prompted by the sensitivity of near-fault motions to rupture 
velocity and azimuth found in a study of the 1906 San Francisco earthquake (Boore, 
1977) in which simple, coherently propagating faults were used in the modeling. 
The question was whether similar effects would be predicted from more realistic, 
less coherent ruptures. The answer is yes, provided that the mean-rupture velocity 
is held constant. Mean-rupture velocity does play an important role, however, and 
if the mean-rupture velocity for a jerky rupture is less than predicted for a smooth 
rupture, the directivity effects may be reduced. For example, if rupture velocities 
for some small- to moderate-size ruptures have been found to be 0.9 fl, the effective 
mean velocity from a longer rupture in the same region might be less than this if 
the rupture has to break through hard patches between segments. This brings up 
the question of how rupture properties are to be chosen for modeling of near-fault 
motions. We have seen here that the high-frequency motions of interest to engineers 
are sensitive to inhomogeneities in the fault parameters. There are few reliable 
estimates of mean rupture velocity, much less the statistical distribution of fault 
slip, rupture velocity, and coherence length. Modeling existing strong-motion records 
is one approach to estimating such parameters, but it is necessary to separate the 
effects of source and geology. We are in the process of such studies, using Monte 
Carlo simulations and restricting the data to rock sites, for which the ringing effects 
of local, low-velocity sediments should be minimized. 

The models used in this paper were chosen for the ease with which the effects of 
incoherence could be studied. There are several reasonable changes to our models 
which can reduce the sentitivity of ground motions to rupture velocity and azimuth. 
First, if the waves propagate out of the perpendicular bisecting plane of the fault 
the cos 8/fl term in equation (2) should be replaced by the apparent slowness of 
the wave in the direction of rupture propagation. This can reduce the effective 
Mach number. Second, we considered unidirectional faults only. While it seems to 
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be true that most large faults are predominately unidirectional, a small amount of 
bidirectional faulting can strongly influence the azimuthal dependence of the ground 
motions, especially at high frequencies. An example is given by the wave forms 
shown in Figure 2 for a model of the 1906 San Francisco earthquake. The evidence 
suggests that the significant faulting was predominantly unidirectional, rupturing 
away from the Lick Observatory station for about 300 km on the northern segment 
and toward the station for about 30 km on the southern segment (Bolt, 1968; 
Boore, 1977). The models show that because of directivity this rupture on the 
northern segment gives very small motions at Lick Observatory. Adding some 
bidirectionality to the faulting, by including a relatively short length of rupture 
toward the station on the southern segment, dramatically increases the predicted 
ground motions. As the period increases, however, the importance of the southern 
segment will decrease relative to that of the northern segment. The analysis we 
have made for unidirectional statistical rupture can be easily modified to account 
for bidirectional faulting. 

As a final comment, although we are interested in the implications of incoherence 
at distances close to large faults, we have used two assumptions, for simplicity, 
that seem inconsistent with this desire. The first is that only far-field terms are 
considered. The second is that the solid angle subtended by the fault at the point 
of observation is small (this is needed in order to express the distance from any 
point on the fault to the receiver as a linear function of distance along the fault). 
We call this the point source approximation; it was necessary in the derivation of 
equation (2). The neglect of near-field terms and fault finiteness, however, are not 
crucial to our arguments. At the frequencies of interest we are almost always at 
least several wavelengths from the source and thus the near-field terms are of little 
importance. The finiteness effect certainly must be accounted for in any calculation 
of motions close to an extended fault, but this can be easily done by breaking the 
fault into a number of segments and using the point source approximation for each 
segment. This was done in the calculations presented in Figures 1 and 2, and we 
see that directivity effects are still present. Furthermore, Archuleta and Brune 
(1975) observed near-fault directivity effects in both laboratory and computer 
models. Thus, although the details of our results may depend on the finiteness of 
the fault, we expect our general conclusions to be valid. 
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A P P E N D I X  A 

Mean spectrum derivation. We can consider the time series of Figure 5 to be a 
random series r(t) multiplied by a boxcar function B(t; AtL), where AtL is the 
duration of the box. Following Blackman and Tukey (1958), the mean energy 
density spectrum/), is given by 

1 
/)(¢o) = ~ Q(¢o) * P(~o) (A1) 

where Q(~) -- the square amplitude of the Fourier transform B(t, AtL) 

o~AtL / ( o~AtL ~ z 
Q(~o) = AtL 2 sin 2 - - ~ - / \ - - ~ - /  (A2) 
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and P(60) is the mean power density spectrum of the random process r(t).  In our 
case, r{ t )  is equivalent to the process given by random impact of particles in 
Brownian motion (Bendat, 1958). The autocovariance of this process is given by ~2 
"~" O'a 2 exp(-0/ITI) where ~ = mean amplitude of the wave, ( I a  2 = variance of the 
amplitude, a - '  = t = mean duration of each pulse, and the mean power spectrum is 

2Oa2a 
P(60) = 2~ae6(60) + - -  (A3) 

0/2 -t- 602. 

The convolution in (A1) can be performed analytically by using contour integration, 
giving the normalized energy density spectrum 

( ;  ff,(60) sinZ60AtL/2 aa 
-- (60AtL/2)2 + 2 ~ (602 _ a2 + a(60 2 + a2)AtL 

_ e-~atL {(602 _ a2) cos 60AtL + 2a60 sin 60AtL} )/(602 + a2)2 (A4) 

where/~ = (aAtL)2/~. When aAtL is large (A4) reduces to equation (6) in the text. 
The exact expression (A4) was actually used in the computations presented in 

Figures 7 through 9 rather than  the approximate expression (6). It will be noted 
that  the term on the right-hand side of equation (A4), representing the contribution 
of the random component of the source, does not vanish at zero frequency as one 
would expect. This is a simple consequence of the fact tha t  (A4) leads to a root 
mean-square spectrum, rather than  a mean spectrum. The problem is not critical 
and is easily side-stepped by normalizing all spectra to the value at zero frequency. 

A P P E N D I X  B 

C o m p l e t e l y  r a n d o m  faul t .  Consider a fault broken into N subfaults, each of moment  
M o / N  where M0 is the total  fault moment.  Let  the dimensions of each subfault be 
small enough tha t  the radiation in the frequency range of interest be equivalent to 
that  of a point source. The radiation from the ith subfault will then be 

ui( t) = ( C / N )  ~( t* - Ti + ~i cos O/fi) (B1) 

where C is a constant depending on azimuth, moment,  and mean distance from the 
fault [see equation (3) in the text], and t* = t - ro/fl  = reduced travel time. We 
allow the subfault, located at  the random position }i to radiate at the random time 
¢i. We can form a new random variable ~i by 

cos 0 
?]i = T i -  ~i ~ (B2) 

The total motion is then  given by 

1 N 
u(t) = c ~ ~ 8(t* - 72) 

i=1 
(B3) 

and the squared amplitude spectrum is 

I U2(60)] = C2 _1_..,. cos 60yi + sin ¢0,1i . 
/ V  (B4) 
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With the definitions 

X = cos oz~/i 

Y = sin ~0~/i 
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we see tha t  (B4) is proport ional  to the square distance from the origin after  N steps 
of uniform length, but  random direction. This is a two-dimensional random walk. 
It  is straightforward (Middleton, 1960) to show that  the expected value E( ] U{~J)I '~) 
is given by 

1 E( [ U(¢o)[ 2) = C 2 ~  [N[E(X 2) + E(y2)] + (N 2 - N)[E2(X) + E2(y)]] (B5) 

which for large N reduces to 

E( I U((o) 12) = C2{E2(X) + E2( Y)} (B6) 

T < 2 X  

P('¢) I 

-X T-X X T+X 

T>2X 

P(~) l 

-X X T-X T+X 

FIG. 13. Probability distribution function ofT, used in Appendix B, where X = L cos O/(2fi). The function 
used depends on the relative size of T and X. 

where the expected values of X and Y are given by the integrals 

E ( X )  = I cos ~p(n)dn 

E(Y)  = f sin corp(7/)d~/ (B7) 

where p(,/)  = probabil i ty density function (pdf) of ~/, derived from the pdf's of T 
and ~. The  lat ter  pdfls were assumed to be rectangular  between 0 and T and -L /2  
and L/2, respectively (where L = fault length), p(7/) is sketched in Figure 13. E 
represents  the expected value, and not  the energy density spectrum as in Appendix 
A. Doing the integrals in (B7) leads to the particularly simple result  for the mean 
spectrum 

jV(~)l~(E(lV(~)12))a/z Icos20]Mo sinw X sin wT/2 
4~rpfl 3 r ~ o~T/2 

(B8) 

where X = L cos t~/2fi. As might be expected on intuitive grounds, this spectrum also 
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corresponds to a fault with infinite rupture velocity and a ramp source time function 
of duration T [see equations (1) and (4) in the text]. 
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