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Properties of Butterworth Filters as Used in My Record-Processing 
Software (TSPP) 

 
By David M. Boore 

 
Filter Properties: 
  
There is a fundamental difference in the shapes of a causal and acausal Butterworth filter, 
at least when the acausal filter is computed by filtering the time series twice with a causal 
filter, running the filter forward and backward through the time series (this produces zero 
phase distortion which is a defining characteristic of acausal filters; any shape can be 
used for an acausal filter constructed in the frequency domain). 
 
The response for a causal filter is given by eq. 15.8-6 in Kanasewich (1981): 
 
 2 2( ) (1 ( ) )p p

c cY f f f f= + .  (1) 
 
The acausal filter used in the BAP processing program (Converse and Brady, 1992) and 
in my processing programs (Boore, 2008) is a time-domain filter, obtained by applying 
the causal filter twice. The consequence is that the response of the acausal filter is 
 
   
 2 2( ) (1 ( ) )p p

c cY f f f f= + .  (2) 
 

Note that for the same p  as input, for 1cf f the causal filter goes as 
 
 ( ) p

cY f f→  
 
whereas the acausal filter falls off more rapidly: 
 
 2( ) p

cY f f→ . 
 
Also note the difference when cf f= : 
 
 causal : 1 2y =  
and 
 
 acausal : 1 2Y = . 
 
This is true no matter what value is chosen for p .  Because of this, it is not possible to 
make the response of the causal and acausal filters the same when the filters are applied 
in the time domain.  In particular, caution should be used if p  is chosen so as to make 
the low-frequency asymptotes the same.  This requires p  for the acausal filter to be half 
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that of the causal filter.  The problem is that the response for frequencies higher than cf  
will be reduced for the acausal as compared to the causal filter.  Designing an acausal 
filter in the frequency does not have this problem; its response can be made identical to 
the causal filter response. 
 
The basic parameter in the Converse and Brady (1992) BAP filter routines, used in my 
record processing software, is nroll , where 0.5nroll p≡ .    This in itself is confusing 
(why not use p ?).  But using either nroll or p leads to another problem:  the same value 
of the order parameter leads to different asymptotic filter behavior, depending on whether 
the filter is causal or acausal (as shown above).  This is confusing, so I now use  nslope  
as the input parameter in my processing program.  In this way I can guarantee that the 
asymptotic behavior is the same for both causal and acausal filters, as follows: 
 
 ( ) nslopeY f f→  
 
for low-cut filters and 
 
 ( ) 1 nslopeY f f→  
 
for high-cut filters. nroll  is related to nslope by the following equations: 
 
 0.5nroll nslope= ∗  
 
for causal filters and 
 
 0.25nroll nslope= ∗  
 
for acausal filters.  One important constraint on specifying nslope  for use in my 
processing is that  
 
 2, 4,6,etc.nslope =  
 
for causal filters and 
 
 4,8,12,etc.nslope =  
 
for an acausal filter.  This is because the BAP filter subroutines use nroll  as the 
fundamental input parameter, nroll  must be an integer, and the equations relating nslope  
to nroll  involve powers of 2 and 4 for causal and acausal filters, respectively. 
 
A word about notation:  As shown above, the response of a time-domain acausal filter is 
not that of a Butterworth filter. Bazzuro et al. (2004) use the terminology “ npnp ”, where 
“ n ” is the number of poles of standard Butterworth filter, and “ p ” indicates one 
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application of the Butterworth filter (NOT the order of the Butterworth; it would have 
been better to use “b ” rather than “ p ”).  The “ npnp ” notation is used to indicate that 
two passes of a Butterworth filter are used.   So, for example, “ 2 2p p ” means that the 
filter response is equivalent to two passes of a two-pole Butterworth filter in the time 
domain, with an asymptotic dependence as 4f  (for a low-cut filter). This notation is used 
to distinguish this case from that in which an acausal filter is simulated in the frequency 
domain, in which case the filter can have a true Butterworth response function.  In this 
case a filter having the same asymptotic behavior ( 4f ) would be designated a “ 4 p ” 
filter--- a standard 4-pole Butterworth filter (but the values of the filters at cf f=  would 
differ, the time domain filter having a value of 1 2  and the frequency domain filter 
having a value of 1 2 . 
 
Choice of nslope: 
 
I suggest looking at the zeroth-order corrected unfiltered velocity to estimate the order 
filter needed.  A trend given by a polynomial of order n  corresponds to a perturbation in 
acceleration given by a polynomial of order 1n − , with a Fourier transform going as 
1 nf at low frequency (e.g., a linear trend in velocity corresponds to a step in 
acceleration, with a low-frequency spectrum going as 1 f ).   The filter must be chosen 
such that it decays at low frequencies more quickly than 1 nf .  Since the low-frequency 
asymptotic behavior of the low-cut filters in my programs goes as nslopef , this means that 
nslope should be chosen such that 
 
 nslope n>  
 
subject to the restrictions about the allowed values given earlier.  In routine processing I 
often use the conservative value 8nslope = . 
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