A single function that produces a smooth transition between two $(R/R_{REF})^{\gamma}$ geometrical spreading functions

David M. Boore

In Stafford et al. (202x), the following single equation is used to represent a geometrical function that approaches $\ln g(R) = \gamma_1 \ln R$ for small *R* and $\ln g(R) = \gamma_f \ln R$ for large *R*, with a smooth transition at $R = r_t$ between these limits.

$$\ln g(R) = \gamma_1 \ln(R) - \frac{(\gamma_1 - \gamma_f)}{2} \ln\left(\frac{R^2 + r_t^2}{r_0^2 + r_t^2}\right)$$
(1)

(I have changed the signs of γ_1 and γ_f from that used in the equation in Stafford et al. so as to be consistent with the specification of the geometrical spreading in my SMSIM programs.)

To generalize:

$$\ln g(R) = \gamma_1 \ln(R/R_{REF}) - (\gamma_1 - \gamma_2) \frac{1}{\xi} \ln\left(\frac{R^{\xi} + R_T^{\xi}}{R_{REF}^{\xi} + R_T^{\xi}}\right)$$
(2)

or better (easier to see asymptotic values)

$$\ln g(R) = \gamma_1 \ln(R/R_{REF}) - (\gamma_1 - \gamma_2) \frac{1}{\xi} \ln\left(\frac{(R/R_{REF})^{\xi} + (R_T/R_{REF})^{\xi}}{1 + (R_T/R_{REF})^{\xi}}\right)$$
(3)

1

where the rate of transition from γ_1 to γ_2 around the transition distance R_T is controlled by ξ . R_{REF} is the distance at which g = 1. Larger ξ gives a sharper transition (e.g., $\xi = 10$ produces a spreading similar to a bilinear spreading). To make this more apparent, here is an equation for ξ in terms of the ratio $g_{RAT} = g(R_T)/g_1(R_T)$, where $g_1(R) = (R_{REF}/R)^{\gamma_1}$:

$$\xi = (\gamma_2 - \gamma_1) \ln \frac{2}{\ln g_{RAT}} \tag{4}$$

and

$$g_{RAT} = \exp\left(\frac{\gamma_2 - \gamma_1}{\xi} \ln 2\right) \tag{5}$$

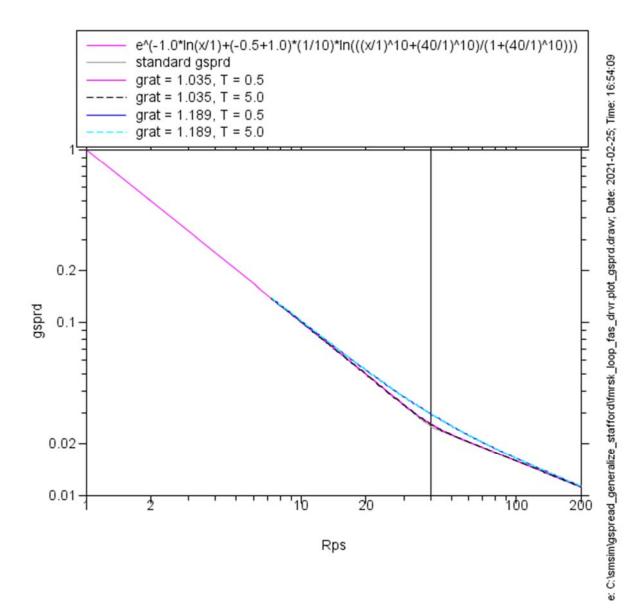
Substituting equation (4) into equation (3) gives:

$$\ln g(R) = \gamma_1 \ln(R/R_{REF}) + \frac{\ln g_{RAT}}{\ln 2} \ln\left(\frac{(R/R_{REF})^{\xi} + (R_T/R_{REF})^{\xi}}{1 + (R_T/R_{REF})^{\xi}}\right)$$
(6)

The actual ratio $g(R_T)/g_1(R_T)$ resulting from ξ given by equation (4) asymptotically approaches g_{RAT} for $R_T/R_{REF} \gg 1$. But for practical purposes, when R_T is several tens of km and $R_{REF} = 1$, the actual ratio is very close to the asymptotic value. With $\gamma_1 = -1.0$, $\gamma_2 = -0.5$, and $\xi = 2$, equation (5) gives $g_{RAT} = 1.189$. That value is used in the graphs below.

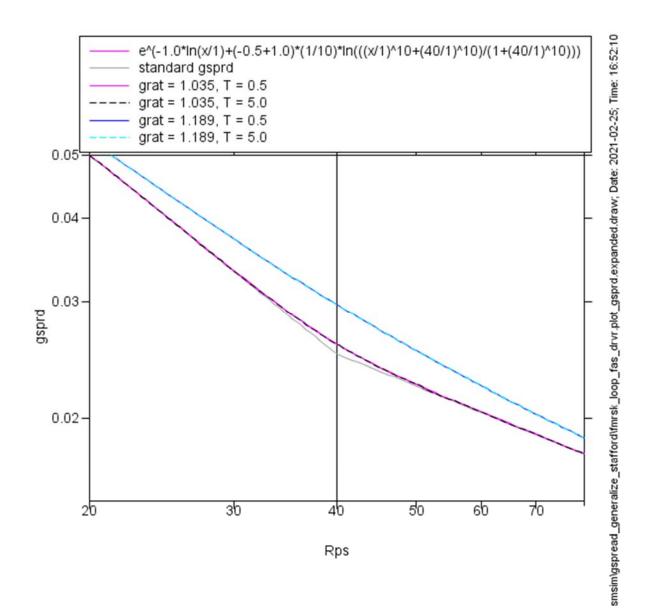
Here is an example with $\gamma_1 = -1.0$, $\gamma_2 = -0.5$, $R_T = 40$ km, $R_{REF} = 1$ km, and two values of g_{RAT} : 1.189 and 1.035. The graph below plots *gsprd* from the SMSIM program *fmrsk_loop_fas_drvr*, along with a direct evaluation of the function for $g_{RAT} = 1.035$ (corresponding to $\xi = 10$). For comparison, the two-segment standard *gsprd* function is also shown. The $g_{RAT} = 1.035$ results are almost the same as the standard, two segment *gsprd* function. As a check of the program *fmrsk_loop_fas_drvr*, the spreading is shown for two values of oscillator period. As the figure shows, the spreading is independent of period (as it should be).

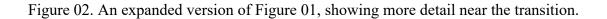
2



An expanded version near the transition distance is shown in Figure 02.

3





The two graphs show that the function is working properly.

References

Stafford, P. J., D. M. Boore, R. R. Youngs, and J. J. Bommer (202x). Host-region parameters for an adjustable model for crustal earthquakes: facilitating the implementation of the backbone approach to building ground-motion logic trees in PSHA, *Earthquake Spectra*, submitted.

4